DeeeTeeee01 commited on
Commit
720ebfc
·
1 Parent(s): 30a8532

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -62
app.py CHANGED
@@ -1,69 +1,69 @@
1
- import streamlit as st
2
- import transformers
3
- import torch
4
 
5
- # Load the model and tokenizer
6
- model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
- tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
 
9
- # Define the function for sentiment analysis
10
- @st.cache_resource
11
- def predict_sentiment(text):
12
- # Load the pipeline.
13
- pipeline = transformers.pipeline("sentiment-analysis")
14
 
15
- # Predict the sentiment.
16
- prediction = pipeline(text)
17
- sentiment = prediction[0]["label"]
18
- score = prediction[0]["score"]
19
 
20
- return sentiment, score
21
 
22
- # Setting the page configurations
23
- st.set_page_config(
24
- page_title="Sentiment Analysis App",
25
- page_icon=":smile:",
26
- layout="wide",
27
- initial_sidebar_state="auto",
28
- )
29
 
30
- # Add description and title
31
- st.write("""
32
- # Predict if your text is Positive, Negative or Nuetral ...
33
- Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
- """)
35
 
36
 
37
- # Add image
38
- image = st.image("sentiment.jpeg", width=400)
39
 
40
- # Get user input
41
- text = st.text_input("Type here:")
42
 
43
- # Define the CSS style for the app
44
- st.markdown(
45
- """
46
- <style>
47
- body {
48
- background-color: #f5f5f5;
49
- }
50
- h1 {
51
- color: #4e79a7;
52
- }
53
- </style>
54
- """,
55
- unsafe_allow_html=True
56
- )
57
 
58
- # Show sentiment output
59
- if text:
60
- sentiment, score = predict_sentiment(text)
61
- if sentiment == "Positive":
62
- st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
- elif sentiment == "Negative":
64
- st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
- else:
66
- st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
 
68
  import streamlit as st
69
  import transformers
@@ -87,13 +87,13 @@ def predict_sentiment(text):
87
 
88
  return sentiment, score
89
 
90
- # # Setting the page configurations
91
- # st.set_page_config(
92
- # page_title="Sentiment Analysis App",
93
- # page_icon=":smile:",
94
- # layout="wide",
95
- # initial_sidebar_state="auto",
96
- # )
97
 
98
  # Add description and title
99
  st.write("""
 
1
+ # import streamlit as st
2
+ # import transformers
3
+ # import torch
4
 
5
+ # # Load the model and tokenizer
6
+ # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
+ # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
 
9
+ # # Define the function for sentiment analysis
10
+ # @st.cache_resource
11
+ # def predict_sentiment(text):
12
+ # # Load the pipeline.
13
+ # pipeline = transformers.pipeline("sentiment-analysis")
14
 
15
+ # # Predict the sentiment.
16
+ # prediction = pipeline(text)
17
+ # sentiment = prediction[0]["label"]
18
+ # score = prediction[0]["score"]
19
 
20
+ # return sentiment, score
21
 
22
+ # # Setting the page configurations
23
+ # st.set_page_config(
24
+ # page_title="Sentiment Analysis App",
25
+ # page_icon=":smile:",
26
+ # layout="wide",
27
+ # initial_sidebar_state="auto",
28
+ # )
29
 
30
+ # # Add description and title
31
+ # st.write("""
32
+ # # Predict if your text is Positive, Negative or Nuetral ...
33
+ # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
+ # """)
35
 
36
 
37
+ # # Add image
38
+ # image = st.image("sentiment.jpeg", width=400)
39
 
40
+ # # Get user input
41
+ # text = st.text_input("Type here:")
42
 
43
+ # # Define the CSS style for the app
44
+ # st.markdown(
45
+ # """
46
+ # <style>
47
+ # body {
48
+ # background-color: #f5f5f5;
49
+ # }
50
+ # h1 {
51
+ # color: #4e79a7;
52
+ # }
53
+ # </style>
54
+ # """,
55
+ # unsafe_allow_html=True
56
+ # )
57
 
58
+ # # Show sentiment output
59
+ # if text:
60
+ # sentiment, score = predict_sentiment(text)
61
+ # if sentiment == "Positive":
62
+ # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
+ # elif sentiment == "Negative":
64
+ # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
+ # else:
66
+ # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
 
68
  import streamlit as st
69
  import transformers
 
87
 
88
  return sentiment, score
89
 
90
+ # Setting the page configurations
91
+ st.set_page_config(
92
+ page_title="Sentiment Analysis App",
93
+ page_icon=":smile:",
94
+ layout="wide",
95
+ initial_sidebar_state="auto",
96
+ )
97
 
98
  # Add description and title
99
  st.write("""