DeeeTeeee01 commited on
Commit
881d7b3
·
1 Parent(s): ac2a663

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +144 -144
app.py CHANGED
@@ -1,140 +1,69 @@
1
- # import streamlit as st
2
- # import transformers
3
- # import torch
4
-
5
- # # Load the model and tokenizer
6
- # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
- # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
-
9
- # # Define the function for sentiment analysis
10
- # @st.cache_resource
11
- # def predict_sentiment(text):
12
- # # Load the pipeline.
13
- # pipeline = transformers.pipeline("sentiment-analysis")
14
-
15
- # # Predict the sentiment.
16
- # prediction = pipeline(text)
17
- # sentiment = prediction[0]["label"]
18
- # score = prediction[0]["score"]
19
-
20
- # return sentiment, score
21
-
22
- # # Setting the page configurations
23
- # st.set_page_config(
24
- # page_title="Sentiment Analysis App",
25
- # page_icon=":smile:",
26
- # layout="wide",
27
- # initial_sidebar_state="auto",
28
- # )
29
-
30
- # # Add description and title
31
- # st.write("""
32
- # # Predict if your text is Positive, Negative or Nuetral ...
33
- # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
- # """)
35
-
36
-
37
- # # Add image
38
- # image = st.image("sentiment.jpeg", width=400)
39
-
40
- # # Get user input
41
- # text = st.text_input("Type here:")
42
-
43
- # # Define the CSS style for the app
44
- # st.markdown(
45
- # """
46
- # <style>
47
- # body {
48
- # background-color: #f5f5f5;
49
- # }
50
- # h1 {
51
- # color: #4e79a7;
52
- # }
53
- # </style>
54
- # """,
55
- # unsafe_allow_html=True
56
- # )
57
-
58
- # # Show sentiment output
59
- # if text:
60
- # sentiment, score = predict_sentiment(text)
61
- # if sentiment == "Positive":
62
- # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
- # elif sentiment == "Negative":
64
- # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
- # else:
66
- # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
-
68
- # import streamlit as st
69
- # import transformers
70
- # import torch
71
 
72
- # # Load the model and tokenizer
73
- # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
74
- # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
75
 
76
- # # Define the function for sentiment analysis
77
- # @st.cache_resource
78
- # def predict_sentiment(text):
79
- # # Load the pipeline
80
- # pipeline = transformers.pipeline("sentiment-analysis")
81
 
82
-
83
- # # Predict the sentiment
84
- # prediction = pipeline(text)
85
- # sentiment = prediction[0]["label"]
86
- # score = prediction[0]["score"]
87
 
88
- # return sentiment, score
89
 
90
- # # Setting the page configurations
91
- # st.set_page_config(
92
- # page_title="Sentiment Analysis App",
93
- # page_icon=":smile:",
94
- # layout="wide",
95
- # initial_sidebar_state="auto",
96
- # )
97
 
98
- # # Add description and title
99
- # st.write("""
100
- # # Predict if your text is Positive, Negative or Neutral ...
101
- # Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
102
- # """)
103
 
104
- # # Add image
105
- # image = st.image("sentiment.jpeg", width=400)
106
 
107
- # # Get user input
108
- # text = st.text_input("Type here:")
109
 
110
- # # Add Predict button
111
- # predict_button = st.button("Predict")
112
 
113
- # # Define the CSS style for the app
114
- # st.markdown(
115
- # """
116
- # <style>
117
- # body {
118
- # background: linear-gradient(to right, #4e79a7, #86a8e7);
119
- # color: lightblue;
120
- # }
121
- # h1 {
122
- # color: #4e79a7;
123
- # }
124
- # </style>
125
- # """,
126
- # unsafe_allow_html=True
127
- # )
128
 
129
- # # Show sentiment output
130
- # if predict_button and text:
131
- # sentiment, score = predict_sentiment(text)
132
- # if sentiment == "Positive":
133
- # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
134
- # elif sentiment == "Negative":
135
- # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
136
- # else:
137
- # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
138
 
139
  import streamlit as st
140
  import transformers
@@ -145,15 +74,16 @@ model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTee
145
  tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
146
 
147
  # Define the function for sentiment analysis
148
- @st.cache
149
  def predict_sentiment(text):
150
  # Load the pipeline
151
- pipeline = transformers.pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
152
 
 
153
  # Predict the sentiment
154
- prediction = pipeline(text)[0]
155
- sentiment = prediction["label"]
156
- score = prediction["score"]
157
 
158
  return sentiment, score
159
 
@@ -167,27 +97,19 @@ st.set_page_config(
167
 
168
  # Add description and title
169
  st.write("""
170
- # Predict if your text is Positive, Negative, or Neutral ...
171
- Please type your text and click the Predict button to know the sentiment!
172
  """)
173
 
 
 
 
174
  # Get user input
175
  text = st.text_input("Type here:")
176
 
177
  # Add Predict button
178
  predict_button = st.button("Predict")
179
 
180
- # Show sentiment output
181
- if predict_button and text:
182
- sentiment, score = predict_sentiment(text)
183
- st.write(f"The sentiment is {sentiment} with a score of {score*100:.2f}% for each category.")
184
-
185
- # Display individual percentages
186
- st.write("Sentiment Breakdown:")
187
- st.write(f"- Negative: {score['NEGATIVE']*100:.2f}%")
188
- st.write(f"- Positive: {score['POSITIVE']*100:.2f}%")
189
- st.write(f"- Neutral: {score['NEUTRAL']*100:.2f}%")
190
-
191
  # Define the CSS style for the app
192
  st.markdown(
193
  """
@@ -204,3 +126,81 @@ h1 {
204
  unsafe_allow_html=True
205
  )
206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import transformers
3
+ import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ # Load the model and tokenizer
6
+ model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
+ tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
 
9
+ # Define the function for sentiment analysis
10
+ @st.cache_resource
11
+ def predict_sentiment(text):
12
+ # Load the pipeline.
13
+ pipeline = transformers.pipeline("sentiment-analysis")
14
 
15
+ # Predict the sentiment.
16
+ prediction = pipeline(text)
17
+ sentiment = prediction[0]["label"]
18
+ score = prediction[0]["score"]
 
19
 
20
+ return sentiment, score
21
 
22
+ # Setting the page configurations
23
+ st.set_page_config(
24
+ page_title="Sentiment Analysis App",
25
+ page_icon=":smile:",
26
+ layout="wide",
27
+ initial_sidebar_state="auto",
28
+ )
29
 
30
+ # Add description and title
31
+ st.write("""
32
+ # Predict if your text is Positive, Negative or Nuetral ...
33
+ Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
+ """)
35
 
 
 
36
 
37
+ # Add image
38
+ image = st.image("sentiment.jpeg", width=400)
39
 
40
+ # Get user input
41
+ text = st.text_input("Type here:")
42
 
43
+ # Define the CSS style for the app
44
+ st.markdown(
45
+ """
46
+ <style>
47
+ body {
48
+ background-color: #f5f5f5;
49
+ }
50
+ h1 {
51
+ color: #4e79a7;
52
+ }
53
+ </style>
54
+ """,
55
+ unsafe_allow_html=True
56
+ )
 
57
 
58
+ # Show sentiment output
59
+ if text:
60
+ sentiment, score = predict_sentiment(text)
61
+ if sentiment == "Positive":
62
+ st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
+ elif sentiment == "Negative":
64
+ st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
+ else:
66
+ st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
 
68
  import streamlit as st
69
  import transformers
 
74
  tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
75
 
76
  # Define the function for sentiment analysis
77
+ @st.cache_resource
78
  def predict_sentiment(text):
79
  # Load the pipeline
80
+ pipeline = transformers.pipeline("sentiment-analysis")
81
 
82
+
83
  # Predict the sentiment
84
+ prediction = pipeline(text)
85
+ sentiment = prediction[0]["label"]
86
+ score = prediction[0]["score"]
87
 
88
  return sentiment, score
89
 
 
97
 
98
  # Add description and title
99
  st.write("""
100
+ # Predict if your text is Positive, Negative or Neutral ...
101
+ Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
102
  """)
103
 
104
+ # Add image
105
+ image = st.image("sentiment.jpeg", width=400)
106
+
107
  # Get user input
108
  text = st.text_input("Type here:")
109
 
110
  # Add Predict button
111
  predict_button = st.button("Predict")
112
 
 
 
 
 
 
 
 
 
 
 
 
113
  # Define the CSS style for the app
114
  st.markdown(
115
  """
 
126
  unsafe_allow_html=True
127
  )
128
 
129
+ # Show sentiment output
130
+ if predict_button and text:
131
+ sentiment, score = predict_sentiment(text)
132
+ if sentiment == "Positive":
133
+ st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
134
+ elif sentiment == "Negative":
135
+ st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
136
+ else:
137
+ st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
138
+
139
+ # import streamlit as st
140
+ # import transformers
141
+ # import torch
142
+
143
+ # # Load the model and tokenizer
144
+ # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
145
+ # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
146
+
147
+ # # Define the function for sentiment analysis
148
+ # @st.cache
149
+ # def predict_sentiment(text):
150
+ # # Load the pipeline
151
+ # pipeline = transformers.pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
152
+
153
+ # # Predict the sentiment
154
+ # prediction = pipeline(text)[0]
155
+ # sentiment = prediction["label"]
156
+ # score = prediction["score"]
157
+
158
+ # return sentiment, score
159
+
160
+ # # Setting the page configurations
161
+ # st.set_page_config(
162
+ # page_title="Sentiment Analysis App",
163
+ # page_icon=":smile:",
164
+ # layout="wide",
165
+ # initial_sidebar_state="auto",
166
+ # )
167
+
168
+ # # Add description and title
169
+ # st.write("""
170
+ # # Predict if your text is Positive, Negative, or Neutral ...
171
+ # Please type your text and click the Predict button to know the sentiment!
172
+ # """)
173
+
174
+ # # Get user input
175
+ # text = st.text_input("Type here:")
176
+
177
+ # # Add Predict button
178
+ # predict_button = st.button("Predict")
179
+
180
+ # # Show sentiment output
181
+ # if predict_button and text:
182
+ # sentiment, score = predict_sentiment(text)
183
+ # st.write(f"The sentiment is {sentiment} with a score of {score*100:.2f}% for each category.")
184
+
185
+ # # Display individual percentages
186
+ # st.write("Sentiment Breakdown:")
187
+ # st.write(f"- Negative: {score['NEGATIVE']*100:.2f}%")
188
+ # st.write(f"- Positive: {score['POSITIVE']*100:.2f}%")
189
+ # st.write(f"- Neutral: {score['NEUTRAL']*100:.2f}%")
190
+
191
+ # # Define the CSS style for the app
192
+ # st.markdown(
193
+ # """
194
+ # <style>
195
+ # body {
196
+ # background: linear-gradient(to right, #4e79a7, #86a8e7);
197
+ # color: lightblue;
198
+ # }
199
+ # h1 {
200
+ # color: #4e79a7;
201
+ # }
202
+ # </style>
203
+ # """,
204
+ # unsafe_allow_html=True
205
+ # )
206
+