File size: 11,027 Bytes
3d86161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
import mimetypes
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import argparse
import stable_whisper
from stable_whisper.text_output import result_to_any, sec2srt
import tempfile
import re
import textwrap
def process_media(model_size, source_lang, upload, model_type):
if upload is None:
return None, None, None, None, "No file uploaded."
temp_path = upload.name
if model_type == "faster whisper":
model = stable_whisper.load_faster_whisper(model_size, device="cuda")
else:
model = stable_whisper.load_model(model_size, device="cuda")
try:
result = model.transcribe(temp_path, language=source_lang, vad=False, regroup=False)
except Exception as e:
return None, None, None, None, f"Transcription failed: {e}"
for i, segment in enumerate(result):
if i+1 == len(result):
break
next_start = result[i+1].start
if next_start - segment.end <= 0.100:
segment.end = next_start
srt_file = tempfile.NamedTemporaryFile(delete=False, suffix=".srt", mode="w", encoding="utf-8")
result.to_srt_vtt(srt_file.name, word_level=False)
srt_file.close()
srt_file_path = srt_file.name
# Transcript as plain text
transcript_txt = result.to_txt()
mime, _ = mimetypes.guess_type(temp_path)
audio_out = temp_path if mime and mime.startswith("audio") else None
video_out = temp_path if mime and mime.startswith("video") else None
return audio_out, video_out, transcript_txt, srt_file_path, None
WHISPER_LANGUAGES = [
("Afrikaans", "af"),
("Albanian", "sq"),
("Amharic", "am"),
("Arabic", "ar"),
("Armenian", "hy"),
("Assamese", "as"),
("Azerbaijani", "az"),
("Bashkir", "ba"),
("Basque", "eu"),
("Belarusian", "be"),
("Bengali", "bn"),
("Bosnian", "bs"),
("Breton", "br"),
("Bulgarian", "bg"),
("Burmese", "my"),
("Catalan", "ca"),
("Chinese", "zh"),
("Croatian", "hr"),
("Czech", "cs"),
("Danish", "da"),
("Dutch", "nl"),
("English", "en"),
("Estonian", "et"),
("Faroese", "fo"),
("Finnish", "fi"),
("French", "fr"),
("Galician", "gl"),
("Georgian", "ka"),
("German", "de"),
("Greek", "el"),
("Gujarati", "gu"),
("Haitian Creole", "ht"),
("Hausa", "ha"),
("Hebrew", "he"),
("Hindi", "hi"),
("Hungarian", "hu"),
("Icelandic", "is"),
("Indonesian", "id"),
("Italian", "it"),
("Japanese", "ja"),
("Javanese", "jv"),
("Kannada", "kn"),
("Kazakh", "kk"),
("Khmer", "km"),
("Korean", "ko"),
("Lao", "lo"),
("Latin", "la"),
("Latvian", "lv"),
("Lingala", "ln"),
("Lithuanian", "lt"),
("Luxembourgish", "lb"),
("Macedonian", "mk"),
("Malagasy", "mg"),
("Malay", "ms"),
("Malayalam", "ml"),
("Maltese", "mt"),
("Maori", "mi"),
("Marathi", "mr"),
("Mongolian", "mn"),
("Nepali", "ne"),
("Norwegian", "no"),
("Nyanja", "ny"),
("Occitan", "oc"),
("Pashto", "ps"),
("Persian", "fa"),
("Polish", "pl"),
("Portuguese", "pt"),
("Punjabi", "pa"),
("Romanian", "ro"),
("Russian", "ru"),
("Sanskrit", "sa"),
("Serbian", "sr"),
("Shona", "sn"),
("Sindhi", "sd"),
("Sinhala", "si"),
("Slovak", "sk"),
("Slovenian", "sl"),
("Somali", "so"),
("Spanish", "es"),
("Sundanese", "su"),
("Swahili", "sw"),
("Swedish", "sv"),
("Tagalog", "tl"),
("Tajik", "tg"),
("Tamil", "ta"),
("Tatar", "tt"),
("Telugu", "te"),
("Thai", "th"),
("Turkish", "tr"),
("Turkmen", "tk"),
("Ukrainian", "uk"),
("Urdu", "ur"),
("Uzbek", "uz"),
("Vietnamese", "vi"),
("Welsh", "cy"),
("Yiddish", "yi"),
("Yoruba", "yo"),
]
with gr.Blocks() as interface:
gr.HTML(
"""
<style>.html-container.svelte-phx28p.padding { padding: 0 !important; }</style>
<div class='custom-container'>
<h1 style='text-align: left;'>Speech Solutions</h1>
"""
)
gr.Markdown(
"""
This is a simple Gradio UI app that combines AI-powered speech and language processing technologies. This app supports the following features:
- Speech-to-text (WhisperAI)
- Language translation (GPT-4) (In progress)
<b>NOTE: This app is currently in the process of applying other AI-solutions for other use cases.</b>
"""
)
with gr.Tabs():
with gr.TabItem("Speech to Text"):
gr.HTML("<h2 style='text-align: left;'>OpenAI/Whisper + stable-ts</h1>")
gr.Markdown(
"""
Open Ai's <b>Whisper</b> is a versatile speech recognition model trained on diverse audio for tasks like multilingual transcription, translation, and language ID. With the help of <b>stable-ts</b>, it provides accurate word-level timestamps in chronological order without extra processing.
"""
)
#General Settings
with gr.Row():
#Media Input
with gr.Column(scale=1):
file_input = gr.File(label="Upload Audio or Video", file_types=["audio", "video"])
#Settings
with gr.Column(scale=1):
with gr.Group():
source_lang = gr.Dropdown(
choices=WHISPER_LANGUAGES,
label="Source Language",
value="en", # default to English
interactive=True
)
model_type = gr.Dropdown(
choices=["faster whisper", "whisper"],
label="Model Type",
value="faster whisper",
interactive=True
)
model_size = gr.Dropdown(
choices=[
("Large v3 Turbo", "large-v3-turbo"),
("Large v3", "large-v3"),
("Large v2", "large-v2"),
("Large", "large"),
("Medium", "medium"),
("Small", "small"),
("Base", "base"),
("Tiny", "tiny")
],
label="Model Size",
value="large-v2",
interactive=True
)
#Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown(
"""
These settings allow you to customize the segmentation of the audio or video file. Adjust these parameters to control how the segments are created based on characters, words, and lines.
<b><i>Note: The values currently set are the default values. You can adjust them to your needs, but be aware that changing these values may affect the segmentation of the audio or video file.</i></b>
"""
)
with gr.Row():
with gr.Column():
max_chars = gr.Number(
label="Max Chars",
info="Maximum characters allowed in segment",
value=86,
precision=0,
interactive=True
)
max_words = gr.Number(
label="Max Words",
info="Maximum words allowed in segment",
value=30,
precision=0,
interactive=True
)
max_lines_per_segment = gr.Number(
label="Max Lines Per Segment",
info="Max lines allowed per subtitle segment",
value=3,
precision=0,
interactive=True
)
with gr.Column():
extend_in = gr.Number(
label="Extend In",
info="Extend the start of all segments by this value (in seconds)",
value=0,
precision=2,
)
extend_out = gr.Number(
label="Extend Out",
info="Extend the end of all segments by this value (in seconds)",
value=0.5,
precision=2,
interactive=True
)
collapse_gaps = gr.Number(
label="Collapse Gaps",
info="Collapse gaps between segments under a certain duration",
value=0.3,
precision=2,
interactive=True
)
with gr.Column():
line_penalty = gr.Number(
label="Longest Line Character",
info="Penalty for each additional line (used to decide when to split segment into several lines)",
value=22.01,
precision=2,
interactive=True
)
longest_line_char_penalty = gr.Number(
label="Longest Line Character",
info="Penalty for each character of the longest segment line (used to decide when to split segment into several lines)",
value=1,
precision=2,
interactive=True
)
submit_btn = gr.Button("PROCESS", elem_id="orange-process-btn")
with gr.Row():
with gr.Column():
transcript_output = gr.Textbox(label="Transcript", lines=8, interactive=False)
srt_output = gr.File(label="Download SRT", interactive=False)
with gr.Column():
video_output = gr.Video(label="Video Output")
audio_output = gr.Audio(label="Audio Output")
submit_btn.click(
fn=process_media,
inputs=[model_size, source_lang, file_input, model_type],
outputs=[audio_output, video_output, transcript_output, srt_output]
)
with gr.TabItem("..."):
pass
interface.launch(share=True) |