File size: 15,584 Bytes
3d86161 b4ef081 28808bd b4ef081 7716a94 3d86161 e935b66 7716a94 28808bd 3d86161 28808bd 3d86161 b4ef081 77b6231 3d86161 b4ef081 77b6231 e935b66 28808bd e935b66 28808bd e935b66 28808bd e935b66 3d86161 7716a94 b4ef081 e935b66 28808bd e935b66 3d86161 b4ef081 5b9ff42 3d86161 3b8578e 3d86161 b4ef081 3d86161 a27f548 3d86161 a27f548 3d86161 a27f548 3d86161 b4ef081 0f42c39 3d86161 7716a94 a27f548 3d86161 ee711bf 3d86161 a27f548 3d86161 b4ef081 3d86161 b4ef081 3d86161 e935b66 3d86161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import tempfile
import mimetypes
import gradio as gr
import torch
import stable_whisper
from stable_whisper.text_output import result_to_any, sec2srt
import time
def process_media(
model_size, source_lang, upload, model_type,
max_chars, max_words, extend_in, extend_out, collapse_gaps,
max_lines_per_segment, line_penalty, longest_line_char_penalty, *args
):
start_time = time.time()
# ----- is file empty? checker ----- #
if upload is None:
return None, None, None, None
temp_path = upload.name
#-- Check if CUDA is available or not --#
if model_type == "faster whisper":
device = "cuda" if torch.cuda.is_available() else "cpu"
model = stable_whisper.load_faster_whisper(model_size, device=device)
result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, no_speech_threshold=0.9, denoiser="demucs")
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = stable_whisper.load_model(model_size, device=device)
result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, no_speech_threshold=0.9, denoiser="demucs")
#, batch_size=16
#result.save_as_json(word_transcription_path)
# ADVANCED SETTINGS #
if max_chars or max_words:
result.split_by_length(
max_chars=int(max_chars) if max_chars else None,
max_words=int(max_words) if max_words else None
)
# ----- Anti-flickering ----- #
extend_start = float(extend_in) if extend_in else 0.0
extend_end = float(extend_out) if extend_out else 0.0
collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0
for i in range(len(result) - 1):
cur = result[i]
next = result[i+1]
if next.start - cur.end < extend_start + extend_end:
k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0
mid = cur.end * (1 - k) + next.start * k
cur.end = next.start = mid
else:
cur.end += extend_end
next.start -= extend_start
if next.start - cur.end <= collapse_gaps_under:
cur.end = next.start = (cur.end + next.start) / 2
if result:
result[0].start = max(0, result[0].start - extend_start)
result[-1].end += extend_end
# --- Custom SRT block output --- #
original_filename = os.path.splitext(os.path.basename(temp_path))[0]
srt_dir = tempfile.gettempdir()
subtitles_path = os.path.join(srt_dir, f"{original_filename}.srt")
result_to_any(
result=result,
filepath=subtitles_path,
filetype='srt',
segments2blocks=lambda segments: segments2blocks(
segments,
int(max_lines_per_segment) if max_lines_per_segment else 3,
float(line_penalty) if line_penalty else 22.01,
float(longest_line_char_penalty) if longest_line_char_penalty else 1.0
),
word_level=False,
)
srt_file_path = subtitles_path
transcript_txt = result.to_txt()
mime, _ = mimetypes.guess_type(temp_path)
audio_out = temp_path if mime and mime.startswith("audio") else None
video_out = temp_path if mime and mime.startswith("video") else None
elapsed = time.time() - start_time
print(f"process_media completed in {elapsed:.2f} seconds")
return audio_out, video_out, transcript_txt, srt_file_path
def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty):
text = text.strip()
words = text.split()
psum = [0]
for w in words:
psum += [psum[-1] + len(w) + 1]
bestScore = 10 ** 30
bestSplit = None
def backtrack(level, wordsUsed, maxLineLength, split):
nonlocal bestScore, bestSplit
if wordsUsed == len(words):
score = level * line_penalty + maxLineLength * longest_line_char_penalty
if score < bestScore:
bestScore = score
bestSplit = split
return
if level + 1 == max_lines_per_segment:
backtrack(
level + 1, len(words),
max(maxLineLength, psum[len(words)] - psum[wordsUsed] - 1),
split + [words[wordsUsed:]]
)
return
for levelWords in range(1, len(words) - wordsUsed + 1):
backtrack(
level + 1, wordsUsed + levelWords,
max(maxLineLength, psum[wordsUsed + levelWords] - psum[wordsUsed] - 1),
split + [words[wordsUsed:wordsUsed + levelWords]]
)
backtrack(0, 0, 0, [])
optimized = '\n'.join(' '.join(words) for words in bestSplit)
return optimized
def segment2optimizedsrtblock(segment: dict, idx: int, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) -> str:
return f'{idx}\n{sec2srt(segment["start"])} --> {sec2srt(segment["end"])}\n' \
f'{optimize_text(segment["text"], max_lines_per_segment, line_penalty, longest_line_char_penalty)}'
def segments2blocks(segments, max_lines_per_segment, line_penalty, longest_line_char_penalty):
return '\n\n'.join(
segment2optimizedsrtblock(s, i, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True)
for i, s in enumerate(segments)
)
WHISPER_LANGUAGES = [
("Afrikaans", "af"),
("Albanian", "sq"),
("Amharic", "am"),
("Arabic", "ar"),
("Armenian", "hy"),
("Assamese", "as"),
("Azerbaijani", "az"),
("Bashkir", "ba"),
("Basque", "eu"),
("Belarusian", "be"),
("Bengali", "bn"),
("Bosnian", "bs"),
("Breton", "br"),
("Bulgarian", "bg"),
("Burmese", "my"),
("Catalan", "ca"),
("Chinese", "zh"),
("Croatian", "hr"),
("Czech", "cs"),
("Danish", "da"),
("Dutch", "nl"),
("English", "en"),
("Estonian", "et"),
("Faroese", "fo"),
("Finnish", "fi"),
("French", "fr"),
("Galician", "gl"),
("Georgian", "ka"),
("German", "de"),
("Greek", "el"),
("Gujarati", "gu"),
("Haitian Creole", "ht"),
("Hausa", "ha"),
("Hebrew", "he"),
("Hindi", "hi"),
("Hungarian", "hu"),
("Icelandic", "is"),
("Indonesian", "id"),
("Italian", "it"),
("Japanese", "ja"),
("Javanese", "jv"),
("Kannada", "kn"),
("Kazakh", "kk"),
("Khmer", "km"),
("Korean", "ko"),
("Lao", "lo"),
("Latin", "la"),
("Latvian", "lv"),
("Lingala", "ln"),
("Lithuanian", "lt"),
("Luxembourgish", "lb"),
("Macedonian", "mk"),
("Malagasy", "mg"),
("Malay", "ms"),
("Malayalam", "ml"),
("Maltese", "mt"),
("Maori", "mi"),
("Marathi", "mr"),
("Mongolian", "mn"),
("Nepali", "ne"),
("Norwegian", "no"),
("Nyanja", "ny"),
("Occitan", "oc"),
("Pashto", "ps"),
("Persian", "fa"),
("Polish", "pl"),
("Portuguese", "pt"),
("Punjabi", "pa"),
("Romanian", "ro"),
("Russian", "ru"),
("Sanskrit", "sa"),
("Serbian", "sr"),
("Shona", "sn"),
("Sindhi", "sd"),
("Sinhala", "si"),
("Slovak", "sk"),
("Slovenian", "sl"),
("Somali", "so"),
("Spanish", "es"),
("Sundanese", "su"),
("Swahili", "sw"),
("Swedish", "sv"),
("Tagalog", "tl"),
("Tajik", "tg"),
("Tamil", "ta"),
("Tatar", "tt"),
("Telugu", "te"),
("Thai", "th"),
("Turkish", "tr"),
("Turkmen", "tk"),
("Ukrainian", "uk"),
("Urdu", "ur"),
("Uzbek", "uz"),
("Vietnamese", "vi"),
("Welsh", "cy"),
("Yiddish", "yi"),
("Yoruba", "yo"),
]
with gr.Blocks() as interface:
gr.HTML(
"""
<style>.html-container.svelte-phx28p.padding { padding: 0 !important; }</style>
<div class='custom-container'>
<h1 style='text-align: left;'>Speech Solutions✨</h1>
<p style='text-align: left;'> Hosted on 🤗
<a href="https://huggingface.co/spaces/DeeeeeM/ssui-app" target="_blank">
<b>Hugging Face Spaces</b>
</a>
</p>
"""
)
gr.Markdown(
"""
This is a Gradio UI app that combines AI-powered speech and language processing technologies. This app supports the following features:
- Speech-to-text (WhisperAI)
- Language translation (GPT-4) (In progress)
- Improved transcription (GPT-4) (In progress)
- Text to Speech (In progress)
<i><b>NOTE: This app is currently in the process of applying other AI-solutions for other use cases.</b></i>
"""
)
with gr.Tabs():
with gr.TabItem("Speech to Text"):
gr.HTML("<h2 style='text-align: left;'>OpenAI / Whisper + stable-ts</h2>")
gr.Markdown(
"""
Open Ai's <b>Whisper</b> is a versatile speech recognition model trained on diverse audio for tasks like multilingual transcription, translation, and language ID. With the help of <b>stable-ts</b>, it provides accurate word-level timestamps in chronological order without extra processing.
<i>Note: The default values are set for balanced and faster processing,
you can choose: large, large v2, and large v3 <b>MODEL SIZE</b> for more accuracy, but they may take longer to process.</i>
"""
)
#General Settings
with gr.Row():
#Media Input
with gr.Column(scale=1):
file_input = gr.File(label="Upload Audio or Video", file_types=["audio", "video"])
#Settings
with gr.Column(scale=1):
with gr.Group():
source_lang = gr.Dropdown(
choices=WHISPER_LANGUAGES,
label="Source Language",
value="tl",
interactive=True,
allow_custom_value=False
)
model_type = gr.Dropdown(
choices=["faster whisper", "whisper"],
label="Model Type",
value="faster whisper",
interactive=True
)
model_size = gr.Dropdown(
choices=[
"deepdml/faster-whisper-large-v3-turbo-ct2",
"large-v3",
"large-v2",
"large",
"medium",
"small",
"base",
"tiny"
],
label="Model Size",
value="deepdml/faster-whisper-large-v3-turbo-ct2",
interactive=True
)
#Advanced Settings
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown(
"""
These settings allow you to customize the segmentation of the audio or video file. Adjust these parameters to control how the segments are created based on characters, words, and lines.
<b><i>Note: The values currently set are the default values. You can adjust them to your needs, but be aware that changing these values may affect the segmentation of the audio or video file.</i></b>
"""
)
with gr.Row():
with gr.Column():
max_chars = gr.Number(
label="Max Chars",
info="Maximum characters allowed in segment",
value=86,
precision=0,
interactive=True
)
max_words = gr.Number(
label="Max Words",
info="Maximum words allowed in segment",
value=30,
precision=0,
interactive=True
)
max_lines_per_segment = gr.Number(
label="Max Lines Per Segment",
info="Max lines allowed per subtitle segment",
value=3,
precision=0,
interactive=True
)
with gr.Column():
extend_in = gr.Number(
label="Extend In",
info="Extend the start of all segments by this value (in seconds)",
value=0,
precision=2,
)
extend_out = gr.Number(
label="Extend Out",
info="Extend the end of all segments by this value (in seconds)",
value=0.5,
precision=2,
interactive=True
)
collapse_gaps = gr.Number(
label="Collapse Gaps",
info="Collapse gaps between segments under a certain duration",
value=0.3,
precision=2,
interactive=True
)
with gr.Column():
line_penalty = gr.Number(
label="Longest Line Character",
info="Penalty for each additional line (used to decide when to split segment into several lines)",
value=22.01,
precision=2,
interactive=True
)
longest_line_char_penalty = gr.Number(
label="Longest Line Character",
info="Penalty for each character of the longest segment line (used to decide when to split segment into several lines)",
value=1,
precision=2,
interactive=True
)
submit_btn = gr.Button("- PROCESS -")
with gr.Row():
with gr.Column():
transcript_output = gr.Textbox(label="Transcript", lines=8, interactive=False)
srt_output = gr.File(label="Download SRT", interactive=False)
with gr.Column():
video_output = gr.Video(label="Video Output")
audio_output = gr.Audio(label="Audio Output")
submit_btn.click(
fn=process_media,
inputs=[
model_size, source_lang, file_input, model_type,
max_chars, max_words, extend_in, extend_out, collapse_gaps,
max_lines_per_segment, line_penalty, longest_line_char_penalty
],
outputs=[audio_output, video_output, transcript_output, srt_output]
)
with gr.TabItem("..."):
pass
interface.launch(share=True) |