File size: 15,584 Bytes
3d86161
 
 
b4ef081
 
28808bd
b4ef081
 
7716a94
3d86161
e935b66
 
 
 
 
7716a94
 
28808bd
3d86161
28808bd
3d86161
 
 
b4ef081
 
 
 
77b6231
3d86161
b4ef081
 
77b6231
 
 
e935b66
28808bd
e935b66
 
 
 
 
 
28808bd
e935b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28808bd
 
 
 
e935b66
 
 
 
 
 
 
 
 
 
 
 
 
 
3d86161
 
 
 
 
 
7716a94
 
 
b4ef081
e935b66
 
 
 
 
 
 
28808bd
e935b66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d86161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ef081
5b9ff42
 
 
 
 
3d86161
 
 
 
3b8578e
3d86161
 
 
b4ef081
 
3d86161
a27f548
3d86161
 
 
 
 
a27f548
3d86161
 
 
a27f548
 
 
 
3d86161
 
 
 
 
 
 
 
 
 
 
 
 
b4ef081
0f42c39
 
3d86161
 
 
 
 
 
 
 
 
7716a94
a27f548
 
 
 
 
 
 
3d86161
 
ee711bf
3d86161
 
a27f548
3d86161
 
 
 
b4ef081
3d86161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ef081
3d86161
 
 
 
 
 
 
 
 
 
 
e935b66
 
 
 
 
3d86161
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os 
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import tempfile
import mimetypes
import gradio as gr 
import torch
import stable_whisper
from stable_whisper.text_output import result_to_any, sec2srt
import time

def process_media(
    model_size, source_lang, upload, model_type,
    max_chars, max_words, extend_in, extend_out, collapse_gaps,
    max_lines_per_segment, line_penalty, longest_line_char_penalty, *args
):
    start_time = time.time()

    # ----- is file empty? checker ----- #
    if upload is None:
        return None, None, None, None 

    temp_path = upload.name

    #-- Check if CUDA is available or not --#
    if model_type == "faster whisper":
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = stable_whisper.load_faster_whisper(model_size, device=device)
        result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, no_speech_threshold=0.9, denoiser="demucs")
    else:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = stable_whisper.load_model(model_size, device=device)
        result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, no_speech_threshold=0.9, denoiser="demucs")
    #, batch_size=16
    #result.save_as_json(word_transcription_path) 

    # ADVANCED SETTINGS #
    if max_chars or max_words:
        result.split_by_length(
            max_chars=int(max_chars) if max_chars else None,
            max_words=int(max_words) if max_words else None
        )

    # ----- Anti-flickering ----- #
    extend_start = float(extend_in) if extend_in else 0.0
    extend_end = float(extend_out) if extend_out else 0.0
    collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0

    for i in range(len(result) - 1):
        cur = result[i]
        next = result[i+1]

        if next.start - cur.end < extend_start + extend_end:
            k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0
            mid = cur.end * (1 - k) + next.start * k
            cur.end = next.start = mid
        else:
            cur.end += extend_end
            next.start -= extend_start

            if next.start - cur.end <= collapse_gaps_under:
                cur.end = next.start = (cur.end + next.start) / 2

    if result:
        result[0].start = max(0, result[0].start - extend_start)
        result[-1].end += extend_end

    # --- Custom SRT block output --- #
    original_filename = os.path.splitext(os.path.basename(temp_path))[0]
    srt_dir = tempfile.gettempdir()
    subtitles_path = os.path.join(srt_dir, f"{original_filename}.srt")

    result_to_any(
        result=result,
        filepath=subtitles_path,
        filetype='srt',
        segments2blocks=lambda segments: segments2blocks(
            segments,
            int(max_lines_per_segment) if max_lines_per_segment else 3,
            float(line_penalty) if line_penalty else 22.01,
            float(longest_line_char_penalty) if longest_line_char_penalty else 1.0
        ),
        word_level=False,
    )
    srt_file_path = subtitles_path
    transcript_txt = result.to_txt()

    mime, _ = mimetypes.guess_type(temp_path)
    audio_out = temp_path if mime and mime.startswith("audio") else None
    video_out = temp_path if mime and mime.startswith("video") else None

    elapsed = time.time() - start_time 
    print(f"process_media completed in {elapsed:.2f} seconds")

    return audio_out, video_out, transcript_txt, srt_file_path

def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty):
    text = text.strip()
    words = text.split()

    psum = [0]
    for w in words:
        psum += [psum[-1] + len(w) + 1]  

    bestScore = 10 ** 30
    bestSplit = None

    def backtrack(level, wordsUsed, maxLineLength, split):
        nonlocal bestScore, bestSplit

        if wordsUsed == len(words):
            score = level * line_penalty + maxLineLength * longest_line_char_penalty
            if score < bestScore:
                bestScore = score
                bestSplit = split
            return

        if level + 1 == max_lines_per_segment:
            backtrack(
                level + 1, len(words),
                max(maxLineLength, psum[len(words)] - psum[wordsUsed] - 1),
                split + [words[wordsUsed:]]
            )
            return

        for levelWords in range(1, len(words) - wordsUsed + 1):
            backtrack(
                level + 1, wordsUsed + levelWords,
                max(maxLineLength, psum[wordsUsed + levelWords] - psum[wordsUsed] - 1),
                split + [words[wordsUsed:wordsUsed + levelWords]]
            )

    backtrack(0, 0, 0, [])

    optimized = '\n'.join(' '.join(words) for words in bestSplit)
    return optimized

def segment2optimizedsrtblock(segment: dict, idx: int, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) -> str:
    return f'{idx}\n{sec2srt(segment["start"])} --> {sec2srt(segment["end"])}\n' \
           f'{optimize_text(segment["text"], max_lines_per_segment, line_penalty, longest_line_char_penalty)}'

def segments2blocks(segments, max_lines_per_segment, line_penalty, longest_line_char_penalty):
    return '\n\n'.join(
        segment2optimizedsrtblock(s, i, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True)
        for i, s in enumerate(segments)
    )

WHISPER_LANGUAGES = [
    ("Afrikaans", "af"),
    ("Albanian", "sq"),
    ("Amharic", "am"),
    ("Arabic", "ar"),
    ("Armenian", "hy"),
    ("Assamese", "as"),
    ("Azerbaijani", "az"),
    ("Bashkir", "ba"),
    ("Basque", "eu"),
    ("Belarusian", "be"),
    ("Bengali", "bn"),
    ("Bosnian", "bs"),
    ("Breton", "br"),
    ("Bulgarian", "bg"),
    ("Burmese", "my"),
    ("Catalan", "ca"),
    ("Chinese", "zh"),
    ("Croatian", "hr"),
    ("Czech", "cs"),
    ("Danish", "da"),
    ("Dutch", "nl"),
    ("English", "en"),
    ("Estonian", "et"),
    ("Faroese", "fo"),
    ("Finnish", "fi"),
    ("French", "fr"),
    ("Galician", "gl"),
    ("Georgian", "ka"),
    ("German", "de"),
    ("Greek", "el"),
    ("Gujarati", "gu"),
    ("Haitian Creole", "ht"),
    ("Hausa", "ha"),
    ("Hebrew", "he"),
    ("Hindi", "hi"),
    ("Hungarian", "hu"),
    ("Icelandic", "is"),
    ("Indonesian", "id"),
    ("Italian", "it"),
    ("Japanese", "ja"),
    ("Javanese", "jv"),
    ("Kannada", "kn"),
    ("Kazakh", "kk"),
    ("Khmer", "km"),
    ("Korean", "ko"),
    ("Lao", "lo"),
    ("Latin", "la"),
    ("Latvian", "lv"),
    ("Lingala", "ln"),
    ("Lithuanian", "lt"),
    ("Luxembourgish", "lb"),
    ("Macedonian", "mk"),
    ("Malagasy", "mg"),
    ("Malay", "ms"),
    ("Malayalam", "ml"),
    ("Maltese", "mt"),
    ("Maori", "mi"),
    ("Marathi", "mr"),
    ("Mongolian", "mn"),
    ("Nepali", "ne"),
    ("Norwegian", "no"),
    ("Nyanja", "ny"),
    ("Occitan", "oc"),
    ("Pashto", "ps"),
    ("Persian", "fa"),
    ("Polish", "pl"),
    ("Portuguese", "pt"),
    ("Punjabi", "pa"),
    ("Romanian", "ro"),
    ("Russian", "ru"),
    ("Sanskrit", "sa"),
    ("Serbian", "sr"),
    ("Shona", "sn"),
    ("Sindhi", "sd"),
    ("Sinhala", "si"),
    ("Slovak", "sk"),
    ("Slovenian", "sl"),
    ("Somali", "so"),
    ("Spanish", "es"),
    ("Sundanese", "su"),
    ("Swahili", "sw"),
    ("Swedish", "sv"),
    ("Tagalog", "tl"),
    ("Tajik", "tg"),
    ("Tamil", "ta"),
    ("Tatar", "tt"),
    ("Telugu", "te"),
    ("Thai", "th"),
    ("Turkish", "tr"),
    ("Turkmen", "tk"),
    ("Ukrainian", "uk"),
    ("Urdu", "ur"),
    ("Uzbek", "uz"),
    ("Vietnamese", "vi"),
    ("Welsh", "cy"),
    ("Yiddish", "yi"),
    ("Yoruba", "yo"),
]

with gr.Blocks() as interface:
    gr.HTML(
        """
        <style>.html-container.svelte-phx28p.padding { padding: 0 !important; }</style>
        <div class='custom-container'>
        <h1 style='text-align: left;'>Speech Solutions✨</h1>
        <p style='text-align: left;'> Hosted on 🤗
            <a href="https://huggingface.co/spaces/DeeeeeM/ssui-app" target="_blank">
                <b>Hugging Face Spaces</b>
            </a>
        </p>
        """
    )
    gr.Markdown(
    """
    This is a Gradio UI app that combines AI-powered speech and language processing technologies. This app supports the following features:

    - Speech-to-text (WhisperAI)
    - Language translation (GPT-4) (In progress)
    - Improved transcription (GPT-4) (In progress)
    - Text to Speech (In progress)

    <i><b>NOTE: This app is currently in the process of applying other AI-solutions for other use cases.</b></i>
    """
    )

    with gr.Tabs():
        with gr.TabItem("Speech to Text"):
            gr.HTML("<h2 style='text-align: left;'>OpenAI / Whisper + stable-ts</h2>")
            gr.Markdown(
            """ 
            Open Ai's <b>Whisper</b> is a versatile speech recognition model trained on diverse audio for tasks like multilingual transcription, translation, and language ID. With the help of <b>stable-ts</b>, it provides accurate word-level timestamps in chronological order without extra processing.

            <i>Note: The default values are set for balanced and faster processing, 
            you can choose: large, large v2, and large v3 <b>MODEL SIZE</b> for more accuracy, but they may take longer to process.</i>

            """
            )
            #General Settings
            with gr.Row():
                #Media Input
                with gr.Column(scale=1):
                    file_input = gr.File(label="Upload Audio or Video", file_types=["audio", "video"])
                #Settings
                with gr.Column(scale=1):
                    with gr.Group():
                        source_lang = gr.Dropdown(
                            choices=WHISPER_LANGUAGES,
                            label="Source Language",
                            value="tl",  
                            interactive=True,
                            allow_custom_value=False
                        )
                        model_type = gr.Dropdown(
                            choices=["faster whisper", "whisper"],
                            label="Model Type",
                            value="faster whisper",
                            interactive=True
                        )
                        model_size = gr.Dropdown(
                            choices=[
                                "deepdml/faster-whisper-large-v3-turbo-ct2",
                                "large-v3",
                                "large-v2",
                                "large",
                                "medium",
                                "small",
                                "base",
                                "tiny"
                            ],
                            label="Model Size",
                            value="deepdml/faster-whisper-large-v3-turbo-ct2",
                            interactive=True
                        )

            #Advanced Settings
            with gr.Accordion("Advanced Settings", open=False):
                gr.Markdown(
                    """ 

                    These settings allow you to customize the segmentation of the audio or video file. Adjust these parameters to control how the segments are created based on characters, words, and lines.

                    <b><i>Note: The values currently set are the default values. You can adjust them to your needs, but be aware that changing these values may affect the segmentation of the audio or video file.</i></b>
                    """
                )
                with gr.Row():
                    with gr.Column():
                        max_chars = gr.Number(
                            label="Max Chars",
                            info="Maximum characters allowed in segment",
                            value=86,
                            precision=0,
                            interactive=True
                        )
                        max_words = gr.Number(
                            label="Max Words",
                            info="Maximum words allowed in segment",
                            value=30,
                            precision=0,
                            interactive=True
                        )
                        max_lines_per_segment = gr.Number(
                            label="Max Lines Per Segment",
                            info="Max lines allowed per subtitle segment",
                            value=3,
                            precision=0,
                            interactive=True
                        )
                    with gr.Column():
                        extend_in = gr.Number(
                            label="Extend In",
                            info="Extend the start of all segments by this value (in seconds)",
                            value=0,
                            precision=2,
                            
                        )
                        extend_out = gr.Number(
                            label="Extend Out",
                            info="Extend the end of all segments by this value (in seconds)",
                            value=0.5,
                            precision=2,
                            interactive=True
                        )
                        collapse_gaps = gr.Number(
                            label="Collapse Gaps",
                            info="Collapse gaps between segments under a certain duration",
                            value=0.3,
                            precision=2,
                            interactive=True
                        )
                        
                    with gr.Column():
                        line_penalty = gr.Number(
                            label="Longest Line Character",
                            info="Penalty for each additional line (used to decide when to split segment into several lines)",
                            value=22.01,
                            precision=2,
                            interactive=True
                        )
                        longest_line_char_penalty = gr.Number(
                            label="Longest Line Character",
                            info="Penalty for each character of the longest segment line (used to decide when to split segment into several lines)",
                            value=1,
                            precision=2,
                            interactive=True
                        )
            submit_btn = gr.Button("- PROCESS -")            
            with gr.Row(): 
                with gr.Column():
                    transcript_output = gr.Textbox(label="Transcript", lines=8, interactive=False)
                    srt_output = gr.File(label="Download SRT", interactive=False)

                with gr.Column():
                    video_output = gr.Video(label="Video Output")
                    audio_output = gr.Audio(label="Audio Output")

            submit_btn.click(
                fn=process_media,
                inputs=[
                    model_size, source_lang, file_input, model_type,
                    max_chars, max_words, extend_in, extend_out, collapse_gaps,
                    max_lines_per_segment, line_penalty, longest_line_char_penalty
                ],
                outputs=[audio_output, video_output, transcript_output, srt_output]
            )

        with gr.TabItem("..."):
            pass

interface.launch(share=True)