import gradio as gr import mimetypes import os os.environ['KMP_DUPLICATE_LIB_OK']='True' import argparse import stable_whisper from stable_whisper.text_output import result_to_any, sec2srt import tempfile import re import textwrap import torch def process_media( model_size, source_lang, upload, model_type, max_chars, max_words, extend_in, extend_out, collapse_gaps, max_lines_per_segment, line_penalty, longest_line_char_penalty, *args ): # ----- is file empty? checker ----- # if upload is None: return None, None, None, None temp_path = upload.name base_path = os.path.splitext(temp_path)[0] word_transcription_path = base_path + '.json' # ---- Load .json or transcribe ---- # if os.path.exists(word_transcription_path): print(f"Transcription data file found at {word_transcription_path}") result = stable_whisper.WhisperResult(word_transcription_path) else: print(f"Can't find transcription data file at {word_transcription_path}. Starting transcribing ...") #-- Check if CUDA is available or not --# if model_type == "faster whisper": device = "cuda" if torch.cuda.is_available() else "cpu" model = stable_whisper.load_faster_whisper(model_size, device=device) else: device = "cuda" if torch.cuda.is_available() else "cpu" model = stable_whisper.load_model(model_size, device=device) try: result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, denoiser="demucs") except Exception as e: return None, None, None, None # Remove the 5th value result.save_as_json(word_transcription_path) # ADVANCED SETTINGS # if max_chars or max_words: result.split_by_length( max_chars=int(max_chars) if max_chars else None, max_words=int(max_words) if max_words else None ) # ----- Anti-flickering ----- # extend_start = float(extend_in) if extend_in else 0.0 extend_end = float(extend_out) if extend_out else 0.0 collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0 for i in range(len(result) - 1): cur = result[i] next = result[i+1] if next.start - cur.end < extend_start + extend_end: k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0 mid = cur.end * (1 - k) + next.start * k cur.end = next.start = mid else: cur.end += extend_end next.start -= extend_start if next.start - cur.end <= collapse_gaps_under: cur.end = next.start = (cur.end + next.start) / 2 if result: result[0].start = max(0, result[0].start - extend_start) result[-1].end += extend_end # --- Custom SRT block output --- # original_filename = os.path.splitext(os.path.basename(temp_path))[0] srt_dir = tempfile.gettempdir() subtitles_path = os.path.join(srt_dir, f"{original_filename}.srt") result_to_any( result=result, filepath=subtitles_path, filetype='srt', segments2blocks=lambda segments: segments2blocks( segments, int(max_lines_per_segment) if max_lines_per_segment else 3, float(line_penalty) if line_penalty else 22.01, float(longest_line_char_penalty) if longest_line_char_penalty else 1.0 ), word_level=False, ) srt_file_path = subtitles_path transcript_txt = result.to_txt() mime, _ = mimetypes.guess_type(temp_path) audio_out = temp_path if mime and mime.startswith("audio") else None video_out = temp_path if mime and mime.startswith("video") else None return audio_out, video_out, transcript_txt, srt_file_path # Only 4 values def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty): text = text.strip() words = text.split() psum = [0] for w in words: psum += [psum[-1] + len(w) + 1] bestScore = 10 ** 30 bestSplit = None def backtrack(level, wordsUsed, maxLineLength, split): nonlocal bestScore, bestSplit if wordsUsed == len(words): score = level * line_penalty + maxLineLength * longest_line_char_penalty if score < bestScore: bestScore = score bestSplit = split return if level + 1 == max_lines_per_segment: backtrack( level + 1, len(words), max(maxLineLength, psum[len(words)] - psum[wordsUsed] - 1), split + [words[wordsUsed:]] ) return for levelWords in range(1, len(words) - wordsUsed + 1): backtrack( level + 1, wordsUsed + levelWords, max(maxLineLength, psum[wordsUsed + levelWords] - psum[wordsUsed] - 1), split + [words[wordsUsed:wordsUsed + levelWords]] ) backtrack(0, 0, 0, []) optimized = '\n'.join(' '.join(words) for words in bestSplit) return optimized def segment2optimizedsrtblock(segment: dict, idx: int, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) -> str: return f'{idx}\n{sec2srt(segment["start"])} --> {sec2srt(segment["end"])}\n' \ f'{optimize_text(segment["text"], max_lines_per_segment, line_penalty, longest_line_char_penalty)}' def segments2blocks(segments, max_lines_per_segment, line_penalty, longest_line_char_penalty): return '\n\n'.join( segment2optimizedsrtblock(s, i, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) for i, s in enumerate(segments) ) WHISPER_LANGUAGES = [ ("Afrikaans", "af"), ("Albanian", "sq"), ("Amharic", "am"), ("Arabic", "ar"), ("Armenian", "hy"), ("Assamese", "as"), ("Azerbaijani", "az"), ("Bashkir", "ba"), ("Basque", "eu"), ("Belarusian", "be"), ("Bengali", "bn"), ("Bosnian", "bs"), ("Breton", "br"), ("Bulgarian", "bg"), ("Burmese", "my"), ("Catalan", "ca"), ("Chinese", "zh"), ("Croatian", "hr"), ("Czech", "cs"), ("Danish", "da"), ("Dutch", "nl"), ("English", "en"), ("Estonian", "et"), ("Faroese", "fo"), ("Finnish", "fi"), ("French", "fr"), ("Galician", "gl"), ("Georgian", "ka"), ("German", "de"), ("Greek", "el"), ("Gujarati", "gu"), ("Haitian Creole", "ht"), ("Hausa", "ha"), ("Hebrew", "he"), ("Hindi", "hi"), ("Hungarian", "hu"), ("Icelandic", "is"), ("Indonesian", "id"), ("Italian", "it"), ("Japanese", "ja"), ("Javanese", "jv"), ("Kannada", "kn"), ("Kazakh", "kk"), ("Khmer", "km"), ("Korean", "ko"), ("Lao", "lo"), ("Latin", "la"), ("Latvian", "lv"), ("Lingala", "ln"), ("Lithuanian", "lt"), ("Luxembourgish", "lb"), ("Macedonian", "mk"), ("Malagasy", "mg"), ("Malay", "ms"), ("Malayalam", "ml"), ("Maltese", "mt"), ("Maori", "mi"), ("Marathi", "mr"), ("Mongolian", "mn"), ("Nepali", "ne"), ("Norwegian", "no"), ("Nyanja", "ny"), ("Occitan", "oc"), ("Pashto", "ps"), ("Persian", "fa"), ("Polish", "pl"), ("Portuguese", "pt"), ("Punjabi", "pa"), ("Romanian", "ro"), ("Russian", "ru"), ("Sanskrit", "sa"), ("Serbian", "sr"), ("Shona", "sn"), ("Sindhi", "sd"), ("Sinhala", "si"), ("Slovak", "sk"), ("Slovenian", "sl"), ("Somali", "so"), ("Spanish", "es"), ("Sundanese", "su"), ("Swahili", "sw"), ("Swedish", "sv"), ("Tagalog", "tl"), ("Tajik", "tg"), ("Tamil", "ta"), ("Tatar", "tt"), ("Telugu", "te"), ("Thai", "th"), ("Turkish", "tr"), ("Turkmen", "tk"), ("Ukrainian", "uk"), ("Urdu", "ur"), ("Uzbek", "uz"), ("Vietnamese", "vi"), ("Welsh", "cy"), ("Yiddish", "yi"), ("Yoruba", "yo"), ] with gr.Blocks() as interface: gr.HTML( """

Speech Solutions

""" ) gr.Markdown( """ This is a Gradio UI app that combines AI-powered speech and language processing technologies. This app supports the following features: - Speech-to-text (WhisperAI) - Language translation (GPT-4) (In progress) NOTE: This app is currently in the process of applying other AI-solutions for other use cases. """ ) with gr.Tabs(): with gr.TabItem("Speech to Text"): gr.HTML("

OpenAI/Whisper + stable-ts

") gr.Markdown( """ Open Ai's Whisper is a versatile speech recognition model trained on diverse audio for tasks like multilingual transcription, translation, and language ID. With the help of stable-ts, it provides accurate word-level timestamps in chronological order without extra processing. """ ) #General Settings with gr.Row(): #Media Input with gr.Column(scale=1): file_input = gr.File(label="Upload Audio or Video", file_types=["audio", "video"]) #Settings with gr.Column(scale=1): with gr.Group(): source_lang = gr.Dropdown( choices=WHISPER_LANGUAGES, label="Source Language", value="tl", # default to Tagalog interactive=True ) model_type = gr.Dropdown( choices=["faster whisper", "whisper"], label="Model Type", value="faster whisper", interactive=True ) model_size = gr.Dropdown( choices=[ ("Large v3 Turbo", "large-v3-turbo"), ("Large v3", "large-v3"), ("Large v2", "large-v2"), ("Large", "large"), ("Medium", "medium"), ("Small", "small"), ("Base", "base"), ("Tiny", "tiny") ], label="Model Size", value="large-v2", interactive=True ) #Advanced Settings with gr.Accordion("Advanced Settings", open=False): gr.Markdown( """ These settings allow you to customize the segmentation of the audio or video file. Adjust these parameters to control how the segments are created based on characters, words, and lines. Note: The values currently set are the default values. You can adjust them to your needs, but be aware that changing these values may affect the segmentation of the audio or video file. """ ) with gr.Row(): with gr.Column(): max_chars = gr.Number( label="Max Chars", info="Maximum characters allowed in segment", value=86, precision=0, interactive=True ) max_words = gr.Number( label="Max Words", info="Maximum words allowed in segment", value=30, precision=0, interactive=True ) max_lines_per_segment = gr.Number( label="Max Lines Per Segment", info="Max lines allowed per subtitle segment", value=3, precision=0, interactive=True ) with gr.Column(): extend_in = gr.Number( label="Extend In", info="Extend the start of all segments by this value (in seconds)", value=0, precision=2, ) extend_out = gr.Number( label="Extend Out", info="Extend the end of all segments by this value (in seconds)", value=0.5, precision=2, interactive=True ) collapse_gaps = gr.Number( label="Collapse Gaps", info="Collapse gaps between segments under a certain duration", value=0.3, precision=2, interactive=True ) with gr.Column(): line_penalty = gr.Number( label="Longest Line Character", info="Penalty for each additional line (used to decide when to split segment into several lines)", value=22.01, precision=2, interactive=True ) longest_line_char_penalty = gr.Number( label="Longest Line Character", info="Penalty for each character of the longest segment line (used to decide when to split segment into several lines)", value=1, precision=2, interactive=True ) submit_btn = gr.Button("PROCESS", elem_id="orange-process-btn") with gr.Row(): with gr.Column(): transcript_output = gr.Textbox(label="Transcript", lines=8, interactive=False) srt_output = gr.File(label="Download SRT", interactive=False) with gr.Column(): video_output = gr.Video(label="Video Output") audio_output = gr.Audio(label="Audio Output") submit_btn.click( fn=process_media, inputs=[ model_size, source_lang, file_input, model_type, max_chars, max_words, extend_in, extend_out, collapse_gaps, max_lines_per_segment, line_penalty, longest_line_char_penalty ], outputs=[audio_output, video_output, transcript_output, srt_output] ) with gr.TabItem("..."): pass interface.launch(share=True)