import os os.environ['KMP_DUPLICATE_LIB_OK']='True' import tempfile import mimetypes import gradio as gr import torch import stable_whisper from stable_whisper.text_output import result_to_any, sec2srt import time def process_media( model_size, source_lang, upload, model_type, max_chars, max_words, extend_in, extend_out, collapse_gaps, max_lines_per_segment, line_penalty, longest_line_char_penalty, *args ): start_time = time.time() # ----- is file empty? checker ----- # if upload is None: return None, None, None, None temp_path = upload.name #-- Check if CUDA is available or not --# if model_type == "faster whisper": device = "cuda" if torch.cuda.is_available() else "cpu" model = stable_whisper.load_faster_whisper(model_size, device=device) else: device = "cuda" if torch.cuda.is_available() else "cpu" model = stable_whisper.load_model(model_size, device=device) try: result = model.transcribe(temp_path, language=source_lang, vad=True, regroup=False, no_speech_threshold=0.9, denoiser="demucs", batch_size=16) #result.save_as_json(word_transcription_path) except Exception as e: return None, None, None, None # ADVANCED SETTINGS # if max_chars or max_words: result.split_by_length( max_chars=int(max_chars) if max_chars else None, max_words=int(max_words) if max_words else None ) # ----- Anti-flickering ----- # extend_start = float(extend_in) if extend_in else 0.0 extend_end = float(extend_out) if extend_out else 0.0 collapse_gaps_under = float(collapse_gaps) if collapse_gaps else 0.0 for i in range(len(result) - 1): cur = result[i] next = result[i+1] if next.start - cur.end < extend_start + extend_end: k = extend_end / (extend_start + extend_end) if (extend_start + extend_end) > 0 else 0 mid = cur.end * (1 - k) + next.start * k cur.end = next.start = mid else: cur.end += extend_end next.start -= extend_start if next.start - cur.end <= collapse_gaps_under: cur.end = next.start = (cur.end + next.start) / 2 if result: result[0].start = max(0, result[0].start - extend_start) result[-1].end += extend_end # --- Custom SRT block output --- # original_filename = os.path.splitext(os.path.basename(temp_path))[0] srt_dir = tempfile.gettempdir() subtitles_path = os.path.join(srt_dir, f"{original_filename}.srt") result_to_any( result=result, filepath=subtitles_path, filetype='srt', segments2blocks=lambda segments: segments2blocks( segments, int(max_lines_per_segment) if max_lines_per_segment else 3, float(line_penalty) if line_penalty else 22.01, float(longest_line_char_penalty) if longest_line_char_penalty else 1.0 ), word_level=False, ) srt_file_path = subtitles_path transcript_txt = result.to_txt() mime, _ = mimetypes.guess_type(temp_path) audio_out = temp_path if mime and mime.startswith("audio") else None video_out = temp_path if mime and mime.startswith("video") else None elapsed = time.time() - start_time print(f"process_media completed in {elapsed:.2f} seconds") return audio_out, video_out, transcript_txt, srt_file_path def optimize_text(text, max_lines_per_segment, line_penalty, longest_line_char_penalty): text = text.strip() words = text.split() psum = [0] for w in words: psum += [psum[-1] + len(w) + 1] bestScore = 10 ** 30 bestSplit = None def backtrack(level, wordsUsed, maxLineLength, split): nonlocal bestScore, bestSplit if wordsUsed == len(words): score = level * line_penalty + maxLineLength * longest_line_char_penalty if score < bestScore: bestScore = score bestSplit = split return if level + 1 == max_lines_per_segment: backtrack( level + 1, len(words), max(maxLineLength, psum[len(words)] - psum[wordsUsed] - 1), split + [words[wordsUsed:]] ) return for levelWords in range(1, len(words) - wordsUsed + 1): backtrack( level + 1, wordsUsed + levelWords, max(maxLineLength, psum[wordsUsed + levelWords] - psum[wordsUsed] - 1), split + [words[wordsUsed:wordsUsed + levelWords]] ) backtrack(0, 0, 0, []) optimized = '\n'.join(' '.join(words) for words in bestSplit) return optimized def segment2optimizedsrtblock(segment: dict, idx: int, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) -> str: return f'{idx}\n{sec2srt(segment["start"])} --> {sec2srt(segment["end"])}\n' \ f'{optimize_text(segment["text"], max_lines_per_segment, line_penalty, longest_line_char_penalty)}' def segments2blocks(segments, max_lines_per_segment, line_penalty, longest_line_char_penalty): return '\n\n'.join( segment2optimizedsrtblock(s, i, max_lines_per_segment, line_penalty, longest_line_char_penalty, strip=True) for i, s in enumerate(segments) ) WHISPER_LANGUAGES = [ ("Afrikaans", "af"), ("Albanian", "sq"), ("Amharic", "am"), ("Arabic", "ar"), ("Armenian", "hy"), ("Assamese", "as"), ("Azerbaijani", "az"), ("Bashkir", "ba"), ("Basque", "eu"), ("Belarusian", "be"), ("Bengali", "bn"), ("Bosnian", "bs"), ("Breton", "br"), ("Bulgarian", "bg"), ("Burmese", "my"), ("Catalan", "ca"), ("Chinese", "zh"), ("Croatian", "hr"), ("Czech", "cs"), ("Danish", "da"), ("Dutch", "nl"), ("English", "en"), ("Estonian", "et"), ("Faroese", "fo"), ("Finnish", "fi"), ("French", "fr"), ("Galician", "gl"), ("Georgian", "ka"), ("German", "de"), ("Greek", "el"), ("Gujarati", "gu"), ("Haitian Creole", "ht"), ("Hausa", "ha"), ("Hebrew", "he"), ("Hindi", "hi"), ("Hungarian", "hu"), ("Icelandic", "is"), ("Indonesian", "id"), ("Italian", "it"), ("Japanese", "ja"), ("Javanese", "jv"), ("Kannada", "kn"), ("Kazakh", "kk"), ("Khmer", "km"), ("Korean", "ko"), ("Lao", "lo"), ("Latin", "la"), ("Latvian", "lv"), ("Lingala", "ln"), ("Lithuanian", "lt"), ("Luxembourgish", "lb"), ("Macedonian", "mk"), ("Malagasy", "mg"), ("Malay", "ms"), ("Malayalam", "ml"), ("Maltese", "mt"), ("Maori", "mi"), ("Marathi", "mr"), ("Mongolian", "mn"), ("Nepali", "ne"), ("Norwegian", "no"), ("Nyanja", "ny"), ("Occitan", "oc"), ("Pashto", "ps"), ("Persian", "fa"), ("Polish", "pl"), ("Portuguese", "pt"), ("Punjabi", "pa"), ("Romanian", "ro"), ("Russian", "ru"), ("Sanskrit", "sa"), ("Serbian", "sr"), ("Shona", "sn"), ("Sindhi", "sd"), ("Sinhala", "si"), ("Slovak", "sk"), ("Slovenian", "sl"), ("Somali", "so"), ("Spanish", "es"), ("Sundanese", "su"), ("Swahili", "sw"), ("Swedish", "sv"), ("Tagalog", "tl"), ("Tajik", "tg"), ("Tamil", "ta"), ("Tatar", "tt"), ("Telugu", "te"), ("Thai", "th"), ("Turkish", "tr"), ("Turkmen", "tk"), ("Ukrainian", "uk"), ("Urdu", "ur"), ("Uzbek", "uz"), ("Vietnamese", "vi"), ("Welsh", "cy"), ("Yiddish", "yi"), ("Yoruba", "yo"), ] with gr.Blocks() as interface: gr.HTML( """

Speech Solutions✨

Hosted on 🤗 Hugging Face Spaces

""" ) gr.Markdown( """ This is a Gradio UI app that combines AI-powered speech and language processing technologies. This app supports the following features: - Speech-to-text (WhisperAI) - Language translation (GPT-4) (In progress) - Improved transcription (GPT-4) (In progress) - Text to Speech (In progress) NOTE: This app is currently in the process of applying other AI-solutions for other use cases. """ ) with gr.Tabs(): with gr.TabItem("Speech to Text"): gr.HTML("

OpenAI / Whisper + stable-ts

") gr.Markdown( """ Open Ai's Whisper is a versatile speech recognition model trained on diverse audio for tasks like multilingual transcription, translation, and language ID. With the help of stable-ts, it provides accurate word-level timestamps in chronological order without extra processing. Note: The default values are set for balanced and faster processing, you can choose: large, large v2, and large v3 MODEL SIZE for more accuracy, but they may take longer to process. """ ) #General Settings with gr.Row(): #Media Input with gr.Column(scale=1): file_input = gr.File(label="Upload Audio or Video", file_types=["audio", "video"]) #Settings with gr.Column(scale=1): with gr.Group(): source_lang = gr.Dropdown( choices=WHISPER_LANGUAGES, label="Source Language", value="tl", interactive=True, allow_custom_value=False ) model_type = gr.Dropdown( choices=["faster whisper", "whisper"], label="Model Type", value="faster whisper", interactive=True ) model_size = gr.Dropdown( choices=[ "deepdml/faster-whisper-large-v3-turbo-ct2", "large-v3", "large-v2", "large", "medium", "small", "base", "tiny" ], label="Model Size", value="deepdml/faster-whisper-large-v3-turbo-ct2", interactive=True ) #Advanced Settings with gr.Accordion("Advanced Settings", open=False): gr.Markdown( """ These settings allow you to customize the segmentation of the audio or video file. Adjust these parameters to control how the segments are created based on characters, words, and lines. Note: The values currently set are the default values. You can adjust them to your needs, but be aware that changing these values may affect the segmentation of the audio or video file. """ ) with gr.Row(): with gr.Column(): max_chars = gr.Number( label="Max Chars", info="Maximum characters allowed in segment", value=86, precision=0, interactive=True ) max_words = gr.Number( label="Max Words", info="Maximum words allowed in segment", value=30, precision=0, interactive=True ) max_lines_per_segment = gr.Number( label="Max Lines Per Segment", info="Max lines allowed per subtitle segment", value=3, precision=0, interactive=True ) with gr.Column(): extend_in = gr.Number( label="Extend In", info="Extend the start of all segments by this value (in seconds)", value=0, precision=2, ) extend_out = gr.Number( label="Extend Out", info="Extend the end of all segments by this value (in seconds)", value=0.5, precision=2, interactive=True ) collapse_gaps = gr.Number( label="Collapse Gaps", info="Collapse gaps between segments under a certain duration", value=0.3, precision=2, interactive=True ) with gr.Column(): line_penalty = gr.Number( label="Longest Line Character", info="Penalty for each additional line (used to decide when to split segment into several lines)", value=22.01, precision=2, interactive=True ) longest_line_char_penalty = gr.Number( label="Longest Line Character", info="Penalty for each character of the longest segment line (used to decide when to split segment into several lines)", value=1, precision=2, interactive=True ) submit_btn = gr.Button("- PROCESS -") with gr.Row(): with gr.Column(): transcript_output = gr.Textbox(label="Transcript", lines=8, interactive=False) srt_output = gr.File(label="Download SRT", interactive=False) with gr.Column(): video_output = gr.Video(label="Video Output") audio_output = gr.Audio(label="Audio Output") submit_btn.click( fn=process_media, inputs=[ model_size, source_lang, file_input, model_type, max_chars, max_words, extend_in, extend_out, collapse_gaps, max_lines_per_segment, line_penalty, longest_line_char_penalty ], outputs=[audio_output, video_output, transcript_output, srt_output] ) with gr.TabItem("..."): pass interface.launch(share=True)