File size: 14,696 Bytes
821e9b3
 
3f8b483
5521e44
821e9b3
9ed8b92
5521e44
9ed8b92
 
 
 
 
5521e44
821e9b3
 
 
3f8b483
821e9b3
3f8b483
 
 
 
821e9b3
3f8b483
c1cd0b6
3f8b483
 
 
 
 
 
 
 
 
 
 
 
5521e44
821e9b3
 
5521e44
821e9b3
 
 
 
 
 
 
5521e44
9ed8b92
 
 
 
821e9b3
9ed8b92
 
 
 
821e9b3
9ed8b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e9b3
 
 
5521e44
821e9b3
 
9ed8b92
821e9b3
 
 
 
9ed8b92
 
821e9b3
 
 
 
 
 
9ed8b92
 
821e9b3
 
9ed8b92
3f8b483
821e9b3
 
 
 
 
9ed8b92
821e9b3
 
 
 
 
 
9ed8b92
821e9b3
9ed8b92
 
 
 
 
 
 
 
5521e44
821e9b3
 
9ed8b92
821e9b3
 
c1cd0b6
1feb2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1cd0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1bc507
77ba485
 
fe3703e
c1cd0b6
fe3703e
357fcb5
 
fe3703e
 
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
fe3703e
 
 
 
 
 
 
 
a1bc507
 
 
357fcb5
 
fe3703e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1cd0b6
9ed8b92
 
c1cd0b6
9ed8b92
 
821e9b3
 
 
 
 
9ed8b92
821e9b3
9ed8b92
821e9b3
9ed8b92
 
 
821e9b3
9ed8b92
821e9b3
9ed8b92
821e9b3
5521e44
 
821e9b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
import re
import json

import gradio as gr
from openai import OpenAI

# Initialize the OpenAI client with the API key from environment variables.
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])

# In-memory storage to track submitted emails (not persistent; resets on app restart).
submitted_emails = set()

def get_evaluation_questions():
    """
    Loads evaluation questions and expected answers from environment variables.
    
    Expected environment variable names are:
      - TEST_QUESTION_1: a JSON array of user query strings.
      - TEST_EXPECTED: a JSON array of JSON-like strings representing the expected outputs.
    
    Both lists must be of equal length.
    """
    questions_str = os.environ.get("TEST_QUESTION_1")
    expected_str = os.environ.get("TEST_EXPECTED_1")
    if not questions_str or not expected_str:
        return []
    try:
        questions_list = json.loads(questions_str)
        expected_list = json.loads(expected_str)
    except Exception as e:
        print(f"Error parsing evaluation questions: {str(e)}")
        return []
    if len(questions_list) != len(expected_list):
        print("Mismatch in length: questions list and expected answers list must have the same length.")
        return []
    return [{"question": q, "expected": e} for q, e in zip(questions_list, expected_list)]

# Load the evaluation questions once at startup.
EVALUATION_QUESTIONS = get_evaluation_questions()

def sanitize_input(text):
    """
    Sanitizes input to prevent harmful content and limits its length.
    """
    # Allow alphanumerics and some punctuation, then truncate to 500 characters.
    clean_text = re.sub(r"[^a-zA-Z0-9\s.,!?@:\-]", "", text)
    return clean_text.strip()[:500]

def validate_email(email):
    """
    Validates that the provided email is in a valid format.
    Returns True if valid, False otherwise.
    """
    email_regex = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"
    return re.match(email_regex, email) is not None

def submit_prompt(email, name, system_prompt):
    """
    Handles user submission:
      - Validates email format.
      - Checks if the email has already been used for submission.
      - Evaluates the system prompt against predefined test questions.
      - Prevents multiple submissions from the same email.
    Returns the evaluation results or an error message if the submission is invalid.
    """
    # Validate email format.
    if not validate_email(email):
        return "Invalid email address. Please enter a valid email."

    # Check if this email has already been used for submission.
    if email in submitted_emails:
        return f"Submission already received for {email}. You can only submit once."

    # Sanitize inputs.
    email = sanitize_input(email)
    name = sanitize_input(name)
    system_prompt = sanitize_input(system_prompt)

    score = 0
    responses = []

    for item in EVALUATION_QUESTIONS:
        question = item["question"]
        expected = item["expected"]
        try:
            # Use the new client-based API for chat completions.
            response = client.chat.completions.create(
                model="gpt-4o-mini",  # Ensure this identifier matches the deployed model.
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": question}
                ]
            )
            # Extract the answer from the response object.
            answer = response.choices[0].message.content.strip()
        except Exception as e:
            answer = f"Error during OpenAI API call: {str(e)}"

        # Simple evaluation: check if the expected output is a substring of the answer (case-insensitive).
        if expected.lower() in answer.lower():
            score += 1
            verdict = "Correct"
        else:
            verdict = "Incorrect"

        responses.append(
            f"Question: {question}\n"
            f"Answer: {answer}\n"
            f"Expected: {expected}\n"
            f"Result: {verdict}\n"
        )

    result_details = "\n".join(responses)

    # Record this email as having submitted their prompt.
    submitted_emails.add(email)

    return (
        f"Thank you for your submission, {name}!\n\n"
        f"Your evaluation score is {score} out of {len(EVALUATION_QUESTIONS)}.\n\nDetails:\n{result_details}"
    )

def build_interface():
    """
    Constructs the Gradio interface with a submission button and single-submission mechanism.
    """
    with gr.Blocks() as demo:
        gr.Markdown("# GPT-4o Mini System Prompt Submission")
        # General description
        gr.Markdown("""Classification Task: Document and Clause Level Identification  
        Participants must create a system prompt for a language model that classifies user queries about legal documents into two specific categories:  
        1. **Document Level**: Determines whether the query refers to a single document or multiple documents.  
        2. **Clause Level**: Identifies whether the query is focused on:  
            - A single clause,  
            - Multiple clauses, or  
            - General information not constrained to any specific clause.  
        
        The model must return a valid JSON object with the following structure:  
        
        ```
        {
          "document_level": "single/multiple",
          "clause_level": "single/multiple/general"
        }
        ```
        
        The goal is to ensure that the model's output is concise, structured, and accurate. This task is designed to evaluate the robustness of the system prompt in handling classification tasks with short, precise outputs.
        """)

        # Example Inputs and Outputs in an Accordion
        with gr.Accordion("Example Inputs and Expected Outputs", open=False):
            gr.Markdown("""
            1. **User Message Example 1:**  
            - *"Please provide the contract for the lease agreement."*  
            - **Expected Output:**  
            ```
            {"document_level": "single", "clause_level": "general"}
            ```
    
            2. **User Message Example 2:**  
            - *"I need all clauses related to termination in the employment contract."*  
            - **Expected Output:**  
            ```
            {"document_level": "single", "clause_level": "multiple"}
            ```
    
            3. **User Message Example 3:**  
            - *"Can you send me the financial reports and the partnership agreement?"*  
            - **Expected Output:**  
            ```
            {"document_level": "multiple", "clause_level": "general"}
            ```
    
            4. **User Message Example 4:**  
            - *"What are the key clauses in the NDA?"*  
            - **Expected Output:**  
            ```
            {"document_level": "single", "clause_level": "multiple"}
            ```
    
            5. **User Message Example 5:**  
            - *"Tell me about the company’s financials."*  
            - **Expected Output:**  
            ```
            {"document_level": "single", "clause_level": "general"}
            ```
    
            6. **User Message Example 6:**  
            - *"Provide all contracts and their confidentiality clauses."*  
            - **Expected Output:**  
            ```
            {"document_level": "multiple", "clause_level": "multiple"}
            ```
    
            7. **User Message Example 7:**  
            - *"Extract the arbitration clause from this service agreement."*  
            - **Expected Output:**  
            ```
            {"document_level": "single", "clause_level": "single"}
            ```
            """)

        # Challenge instructions in another Accordion
        with gr.Accordion("Challenge Instructions", open=False):
            gr.Markdown("""
            - Design a system prompt that ensures the AI generates outputs like those above when given similar user messages.
            
              The system prompt should:
              1. Specify formatting requirements (e.g., *"Output must be a valid JSON object"*). Note that we are not using constrained decoding or any sort of JSON mode; if not correctly prompted, the LLM will output plain text.
              2. Emphasize strict adherence to classification definitions:
                  - *Single Document:* Refers to one document.
                  - *Multiple Documents:* Refers to more than one document.
                  - *Single Clause:* Refers to one specific clause.
                  - *Multiple Clauses:* Refers to more than one specific clause.
                  - *General Information:* Refers to general content not tied to specific clauses.
            
              You can only submit once, so test your system prompt thoroughly before submission!
              """)
        
        
        
        gr.Markdown("""Classification Task: Document and Clause Level Identification
                    Challenge Description
                    Participants must create a system prompt for a language model that classifies user queries about legal documents into two specific categories:"

                    1. Document Level: Determines whether the query refers to a single document or multiple documents.

                    2. Clause Level: Identifies whether the query is focused on:

                        - A single clause,

                        - Multiple clauses, or

                        - General information not constrained to any specific clause.

                    The model must return a valid JSON object with the following structure:
                    
                    ```json
                    {"document_level": "single/multiple","clause_level": "single/multiple/general"}
                    ```
                    
                    The goal is to ensure that the model's output is concise, structured, and accurate. This task is designed to evaluate the robustness of the system prompt in handling classification tasks with short, precise outputs.

                    <details>
                    <summary>Click to see example inputs and outputs.</summary>
                    **Example Inputs and Expected Outputs**
                    
                    1. **User Message Example 1:**

                    - *"Please provide the contract for the lease agreement."*

                    - **Expected Output:**


                    ```json
                    {"document_level": "single", "clause_level": "general"}
                    ```

                    2. **User Message Example 2:**

                    - *"I need all clauses related to termination in the employment contract."*

                    - **Expected Output:**


                    ```json
                    {"document_level": "single", "clause_level": "multiple"}
                    ```

                    3. **User Message Example 3:**

                    - *"Can you send me the financial reports and the partnership agreement?"*

                    - **Expected Output:**


                    ```json
                    {"document_level": "multiple", "clause_level": "general"}
                    ```
                    
                    4. **User Message Example 4:**

                    - *"What are the key clauses in the NDA?"*

                    - **Expected Output:**


                    ```json
                    {"document_level": "single", "clause_level": "multiple"}
                    ```
                    
                    5. **User Message Example 5:**

                    - *"Tell me about the company’s financials."*

                    - **Expected Output:**


                    ```json
                    {"document_level": "single", "clause_level": "general"}
                    ```

                    6. **User Message Example 6:**

                    - *"Provide all contracts and their confidentiality clauses."*

                    - **Expected Output:**


                    ```json
                    {"document_level": "multiple", "clause_level": "multiple"}
                    ```
                    
                    7. **User Message Example 7:**

                    - *"Extract the arbitration clause from this service agreement."*

                    - **Expected Output:**


                    ```json
                    {"document_level": "single", "clause_level": "single"}
                    ```
                    
                    </details>

                    **Challenge Instructions**
                    - Design a system prompt that ensures the AI generates outputs like those above when given similar user messages.

                    - The system prompt should:

                        1. Specify formatting requirements (e.g., "Output must be a valid JSON object"), not that we are not using constrained decoding or any sort of JSON mode, if not correctly prompted the llm will output plain text.

                        2. Emphasize strict adherence to classification definitions:

                            - *Single Document:* Refers to one document.

                            - *Multiple Documents:* Refers to more than one document.

                            - *Single Clause:* Refers to one specific clause.

                            - *Multiple Clauses:* Refers to more than one specific clause.

                            - *General Information:* Refers to general content not tied to specific clauses.
                    """)
        gr.Markdown(
            "Please enter your details and submit your system prompt below. "
            "You can only submit once, I suggest trying to test and build out the system prompt using the same LM being used here elsewhere before submitting."
        )

        email_input = gr.Textbox(label="Email", placeholder="[email protected]")
        name_input = gr.Textbox(label="Name", placeholder="Your name")
        system_prompt_input = gr.Textbox(
            label="System Prompt",
            placeholder="Enter your system prompt here...",
            lines=6,
        )
        submit_button = gr.Button("Submit")
        output_text = gr.Textbox(label="Results", lines=15)

        submit_button.click(
            fn=submit_prompt,
            inputs=[email_input, name_input, system_prompt_input],
            outputs=output_text,
        )
    
    return demo

if __name__ == "__main__":
    interface = build_interface()
    # Launch the app on 0.0.0.0 so it is accessible externally (e.g., in a container).
    interface.launch(server_name="0.0.0.0", server_port=7860)