import torch import gradio as gr import whisper import os # 確保 Whisper 模塊被正確加載 print("Whisper module contents:", dir(whisper)) # 加載 Whisper 模型 model = whisper.load_model("large-v2", device="cuda" if torch.cuda.is_available() else "cpu") def transcribe(audio_file): audio_path = audio_file result = model.transcribe(audio_path) text = result["text"] base_name = os.path.splitext(os.path.basename(audio_path))[0] transcript_file_path = f"txt/{base_name}_transcript.txt" os.makedirs("txt", exist_ok=True) with open(transcript_file_path, "w") as file: file.write(text) return text, transcript_file_path with gr.Blocks(css=".container { max-width: 800px; margin: auto; } .gradio-app { background-color: #f0f0f0; } button { background-color: #4CAF50; color: white; }") as demo: gr.Markdown("ASR 語音語料辨識修正工具") with gr.Row(): # 修改了 Audio 組件的宣告方式 audio_input = gr.Audio(label="上載你的音頻", type="filepath") submit_button = gr.Button("語音識別") output_text = gr.TextArea(label="識別結果") download_link = gr.File(label="下載轉錄文件") submit_button.click(fn=transcribe, inputs=audio_input, outputs=[output_text, download_link]) demo.launch()