File size: 7,332 Bytes
eee5b94
71e3d07
 
 
eee5b94
 
 
71e3d07
537576e
6ca9070
71e3d07
 
eee5b94
 
71e3d07
537576e
6ca9070
537576e
6ca9070
537576e
6ca9070
 
537576e
eee5b94
 
 
 
71e3d07
eee5b94
71e3d07
 
 
 
 
 
 
eee5b94
71e3d07
 
eee5b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e3d07
 
eee5b94
 
 
71e3d07
 
 
eee5b94
71e3d07
 
eee5b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537576e
 
 
 
eee5b94
 
 
537576e
 
eee5b94
 
537576e
eee5b94
 
 
 
 
 
71e3d07
 
 
 
 
 
 
eee5b94
 
 
71e3d07
 
 
eee5b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e3d07
 
eee5b94
 
 
 
 
 
 
 
537576e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import gradio as gr
import aiohttp
import asyncio
import json
from datasets import Dataset, DatasetDict, load_dataset, load_from_disk
from huggingface_hub import HfApi, HfFolder

# 從環境變量中獲取 Hugging Face API 令牌和其他配置
HF_API_TOKEN = os.environ.get("HF_API_TOKEN")
LLM_API = os.environ.get("LLM_API")
LLM_URL = os.environ.get("LLM_URL")
USER_ID = "HuggingFace Space"
DATASET_NAME = os.environ.get("DATASET_NAME")

# 確保令牌不為空
if HF_API_TOKEN is None:
    raise ValueError("HF_API_TOKEN 環境變量未設置。請在 Hugging Face Space 的設置中添加該環境變量。")

# 設置 Hugging Face API 令牌
HfFolder.save_token(HF_API_TOKEN)

# 加載或創建數據集
try:
    dataset = load_dataset(DATASET_NAME)
except:
    dataset = DatasetDict({"feedback": Dataset.from_dict({"user_input": [], "response": [], "feedback_type": [], "improvement": []})})

async def send_chat_message(user_input):
    payload = {
        "inputs": {},
        "query": user_input,
        "response_mode": "streaming",
        "conversation_id": "",
        "user": USER_ID,
    }
    print("Sending chat message payload:", payload)

    async with aiohttp.ClientSession() as session:
        try:
            async with session.post(
                url=f"{LLM_URL}/chat-messages",
                headers={"Authorization": f"Bearer {LLM_API}"},
                json=payload,
                timeout=aiohttp.ClientTimeout(total=60)
            ) as response:
                if response.status != 200:
                    print(f"Error: {response.status}")
                    return f"Error: {response.status}"

                full_response = []
                async for line in response.content:
                    line = line.decode('utf-8').strip()
                    if not line:
                        continue
                    if "data: " not in line:
                        continue
                    try:
                        data = json.loads(line.split("data: ")[1])
                        if "answer" in data:
                            full_response.append(data["answer"])
                    except (IndexError, json.JSONDecodeError) as e:
                        print(f"Error parsing line: {line}, error: {e}")
                        continue

                if full_response:
                    return ''.join(full_response).strip()
                else:
                    return "Error: No thought found in the response"
        except Exception as e:
            print(f"Exception: {e}")
            return f"Exception: {e}"

async def handle_input(user_input):
    print(f"Handling input: {user_input}")
    chat_response = await send_chat_message(user_input)
    print("Chat response:", chat_response)
    return chat_response

def run_sync(user_input):
    print(f"Running sync with input: {user_input}")
    return asyncio.run(handle_input(user_input))

def save_feedback(user_input, response, feedback_type, improvement):
    feedback = {
        "user_input": user_input,
        "response": response,
        "feedback_type": feedback_type,
        "improvement": improvement
    }
    print(f"Saving feedback: {feedback}")
    # Append to the dataset
    new_data = {"user_input": [user_input], "response": [response], "feedback_type": [feedback_type], "improvement": [improvement]}
    global dataset
    dataset["feedback"] = dataset["feedback"].add_item(new_data)
    dataset.push_to_hub(DATASET_NAME)

def handle_feedback(response, feedback_type, improvement):
    # 獲取最新的用戶輸入(假設用戶輸入保存在全局變量中)
    global last_user_input
    save_feedback(last_user_input, response, feedback_type, improvement)
    return "感謝您的反饋!"

def handle_user_input(user_input):
    print(f"User input: {user_input}")
    global last_user_input
    last_user_input = user_input  # 保存最新的用戶輸入
    return run_sync(user_input)

# 讀取並顯示反饋內容的函數
def show_feedback():
    try:
        feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records")
        return feedbacks
    except Exception as e:
        return f"Error: {e}"

TITLE = """<h1 align="center">Large Language Model (LLM) Playground 💬 <a href='https://support.maicoin.com/zh-TW/support/home' target='_blank'>Cryptocurrency Exchange FAQ</a></h1>"""
SUBTITLE = """<h2 align="center"><a href='https://www.twman.org' target='_blank'>TonTon Huang Ph.D. @ 2024/06 </a><br></h2>"""
LINKS = """<a href='https://blog.twman.org/2021/04/ASR.html' target='_blank'>那些語音處理 (Speech Processing) 踩的坑</a> | <a href='https://blog.twman.org/2021/04/NLP.html' target='_blank'>那些自然語言處理 (Natural Language Processing, NLP) 踩的坑</a> | <a href='https://blog.twman.org/2024/02/asr-tts.html' target='_blank'>那些ASR和TTS可能會踩的坑</a> | <a href='https://blog.twman.org/2024/02/LLM.html' target='_blank'>那些大模型開發會踩的坑</a> | <a href='https://blog.twman.org/2023/04/GPT.html' target='_blank'>什麼是大語言模型,它是什麼?想要嗎?</a><br>
<a href='https://blog.twman.org/2023/07/wsl.html' target='_blank'>用PaddleOCR的PPOCRLabel來微調醫療診斷書和收據</a> | <a href='https://blog.twman.org/2023/07/HugIE.html' target='_blank'>基於機器閱讀理解和指令微調的統一信息抽取框架之診斷書醫囑資訊擷取分析</a><br>
<a href='https://huggingface.co/spaces/DeepLearning101/High-Entropy-Alloys-FAQ/blob/main/reference.txt' target='_blank'>「高熵合金」(High-entropy alloys) 參考論文</a><br>"""

iface = gr.Blocks()

with iface:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    gr.HTML(LINKS)
    with gr.Row():
        user_input = gr.Textbox(label='歡迎問我關於「高熵合金」(High-entropy alloys) 的各種疑難雜症', lines=2, placeholder="在此輸入問題...")
        submit_button = gr.Button("提交")
    with gr.Row():
        response_output = gr.Textbox(label='模型回應', interactive=False)
    with gr.Row():
        like_button = gr.Button("👍")
        dislike_button = gr.Button("👎")
        improvement_input = gr.Textbox(label='改進建議', placeholder='請輸入如何改進模型回應的建議...')
    with gr.Row():
        feedback_output = gr.Textbox(label='反饋結果', interactive=False)
    with gr.Row():
        show_feedback_button = gr.Button("查看所有反饋")
        feedback_display = gr.JSON(label='所有反饋')

    submit_button.click(fn=handle_user_input, inputs=user_input, outputs=response_output)

    like_button.click(
        fn=lambda response, improvement: handle_feedback(response, "like", improvement),
        inputs=[response_output, improvement_input],
        outputs=feedback_output
    )

    dislike_button.click(
        fn=lambda response, improvement: handle_feedback(response, "dislike", improvement),
        inputs=[response_output, improvement_input],
        outputs=feedback_output
    )

    show_feedback_button.click(fn=show_feedback, outputs=feedback_display)

# 添加示例
examples = [
    ["AlCoCrFeNi HEA coating 可用怎樣的實驗方法做到 ?"],
    ["請問high entropy nitride coatings的形成,主要可透過那些元素來熱這個材料形成熱穩定?"]
]

iface.launch(examples=examples)