import os import gradio as gr import aiohttp import asyncio import json from datasets import Dataset, DatasetDict, load_dataset, load_from_disk from huggingface_hub import HfApi, HfFolder HEA_API_TOKEN = os.environ.get("HF_API_TOKEN") LLM_API = os.environ.get("LLM_API") LLM_URL = os.environ.get("LLM_URL") USER_ID = "HuggingFace Space" HfFolder.save_token(HF_API_TOKEN) DATASET_NAME = os.environ.get("DATASET_NAME") try: dataset = load_dataset(DATASET_NAME) except: dataset = DatasetDict({"feedback": Dataset.from_dict({"user_input": [], "response": [], "feedback_type": [], "improvement": []})}) async def send_chat_message(user_input): payload = { "inputs": {}, "query": user_input, "response_mode": "streaming", "conversation_id": "", "user": USER_ID, } print("Sending chat message payload:", payload) async with aiohttp.ClientSession() as session: try: async with session.post( url=f"{LLM_URL}/chat-messages", headers={"Authorization": f"Bearer {LLM_API}"}, json=payload, timeout=aiohttp.ClientTimeout(total=60) ) as response: if response.status != 200: print(f"Error: {response.status}") return f"Error: {response.status}" full_response = [] async for line in response.content: line = line.decode('utf-8').strip() if not line: continue if "data: " not in line: continue try: data = json.loads(line.split("data: ")[1]) if "answer" in data: full_response.append(data["answer"]) except (IndexError, json.JSONDecodeError) as e: print(f"Error parsing line: {line}, error: {e}") continue if full_response: return ''.join(full_response).strip() else: return "Error: No thought found in the response" except Exception as e: print(f"Exception: {e}") return f"Exception: {e}" async def handle_input(user_input): print(f"Handling input: {user_input}") chat_response = await send_chat_message(user_input) print("Chat response:", chat_response) return chat_response def run_sync(user_input): print(f"Running sync with input: {user_input}") return asyncio.run(handle_input(user_input)) def save_feedback(user_input, response, feedback_type, improvement): feedback = { "user_input": user_input, "response": response, "feedback_type": feedback_type, "improvement": improvement } print(f"Saving feedback: {feedback}") # Append to the dataset new_data = {"user_input": [user_input], "response": [response], "feedback_type": [feedback_type], "improvement": [improvement]} global dataset dataset["feedback"] = dataset["feedback"].add_item(new_data) dataset.push_to_hub(DATASET_NAME) def handle_feedback(response, feedback_type, improvement): feedback = { "response": response, "feedback_type": feedback_type, "improvement": improvement } save_feedback(response, feedback_type, improvement) return "Thank you for your feedback!" def handle_user_input(user_input): print(f"User input: {user_input}") return run_sync(user_input) # 读取并显示反馈内容的函数 def show_feedback(): try: feedbacks = dataset["feedback"].to_pandas().to_dict(orient="records") return feedbacks except Exception as e: return f"Error: {e}" TITLE = """