Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # @Time : 2022/03/23 14:50 | |
| # @Author : Jianing Wang | |
| # @Email : [email protected] | |
| # @File : ContrastiveLoss.py | |
| # !/usr/bin/env python | |
| # coding=utf-8 | |
| from enum import Enum | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn, Tensor | |
| from transformers.models.bert.modeling_bert import BertModel | |
| from transformers import BertTokenizer, BertConfig | |
| class SiameseDistanceMetric(Enum): | |
| """ | |
| The metric for the contrastive loss | |
| """ | |
| EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2) | |
| MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1) | |
| COSINE_DISTANCE = lambda x, y: 1-F.cosine_similarity(x, y) | |
| class ContrastiveLoss(nn.Module): | |
| """ | |
| Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the | |
| two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased. | |
| @:param distance_metric: The distance metric function | |
| @:param margin: (float) The margin distance | |
| @:param size_average: (bool) Whether to get averaged loss | |
| Input example of forward function: | |
| rep_anchor: [[0.2, -0.1, ..., 0.6], [0.2, -0.1, ..., 0.6], ..., [0.2, -0.1, ..., 0.6]] | |
| rep_candidate: [[0.3, 0.1, ...m -0.3], [-0.8, 1.2, ..., 0.7], ..., [-0.9, 0.1, ..., 0.4]] | |
| label: [0, 1, ..., 1] | |
| Return example of forward function: | |
| 0.015 (averged) | |
| 2.672 (sum) | |
| """ | |
| def __init__(self, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average:bool = False): | |
| super(ContrastiveLoss, self).__init__() | |
| self.distance_metric = distance_metric | |
| self.margin = margin | |
| self.size_average = size_average | |
| def forward(self, rep_anchor, rep_candidate, label: Tensor): | |
| # rep_anchor: [batch_size, hidden_dim] denotes the representations of anchors | |
| # rep_candidate: [batch_size, hidden_dim] denotes the representations of positive / negative | |
| # label: [batch_size, hidden_dim] denotes the label of each anchor - candidate pair | |
| distances = self.distance_metric(rep_anchor, rep_candidate) | |
| losses = 0.5 * (label.float() * distances.pow(2) + (1 - label).float() * F.relu(self.margin - distances).pow(2)) | |
| return losses.mean() if self.size_average else losses.sum() | |
| if __name__ == "__main__": | |
| # configure for huggingface pre-trained language models | |
| config = BertConfig.from_pretrained("bert-base-cased") | |
| # tokenizer for huggingface pre-trained language models | |
| tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
| # pytorch_model.bin for huggingface pre-trained language models | |
| model = BertModel.from_pretrained("bert-base-cased") | |
| # obtain two batch of examples, each corresponding example is a pair | |
| examples1 = ["This is the sentence anchor 1.", "It is the second sentence in this article named Section D."] | |
| examples2 = ["It is the same as anchor 1.", "I think it is different with Section D."] | |
| label = [1, 0] | |
| # convert each example for feature | |
| # {"input_ids": xxx, "attention_mask": xxx, "token_tuype_ids": xxx} | |
| features1 = tokenizer(examples1, add_special_tokens=True, padding=True) | |
| features2 = tokenizer(examples2, add_special_tokens=True, padding=True) | |
| # padding and convert to feature batch | |
| max_seq_lem = 16 | |
| features1 = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in features1.items()} | |
| features2 = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in features2.items()} | |
| label = torch.Tensor(label).long() | |
| # obtain sentence embedding by averaged pooling | |
| rep_anchor = model(**features1)[0] # [batch_size, max_seq_len, hidden_dim] | |
| rep_candidate = model(**features2)[0] # [batch_size, max_seq_len, hidden_dim] | |
| rep_anchor = torch.mean(rep_anchor, -1) # [batch_size, hidden_dim] | |
| rep_candidate = torch.mean(rep_candidate, -1) # [batch_size, hidden_dim] | |
| # obtain contrastive loss | |
| loss_fn = ContrastiveLoss() | |
| loss = loss_fn(rep_anchor=rep_anchor, rep_candidate=rep_candidate, label=label) | |
| print(loss) # tensor(0.0869, grad_fn=<SumBackward0>) | |