File size: 1,633 Bytes
06fc5c8
 
00885ea
 
 
 
 
 
 
0075f67
 
00885ea
 
 
0075f67
 
 
 
00885ea
0075f67
00885ea
 
e34c54b
00885ea
0075f67
00885ea
 
06fc5c8
 
e34c54b
 
06fc5c8
0075f67
00885ea
 
06fc5c8
00885ea
 
 
 
 
8581ee6
06fc5c8
 
0075f67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import time
import json
import gradio as gr
import torch
import torchaudio
import numpy as np
from denoiser.demucs import Demucs
from pydub import AudioSegment

modelpath = './denoiser/master64.th'

def transcribe(file_upload, microphone):
    file = microphone if microphone is not None else file_upload
    model = Demucs(hidden=64)
    state_dict = torch.load(modelpath, map_location='cpu')
    model.load_state_dict(state_dict)
    demucs = model
    x, sr = torchaudio.load(file)
    out = demucs(x[None])[0]
    out = out / max(out.abs().max().item(), 1)
    torchaudio.save('enhanced.wav', out, sr)
    enhanced = AudioSegment.from_wav('enhanced.wav') # 只有去完噪的需要降 bitrate 再做語音識別
    enhanced.export('enhanced.wav', format="wav", bitrate="256k")
    return "enhanced.wav"

demo = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(type="filepath", label="語音質檢麥克風實時錄音"),        
        gr.Audio(type="filepath", label="語音質檢原始音檔"),
    ],
    outputs=gr.Audio(type="filepath", label="Output"),
    title="<p style='text-align: center'><a href='https://www.twman.org/AI' target='_blank'>語音質檢噪音去除 (語音增強):Meta Denoiser</a>",
    description="為了提升語音識別的效果,可以在識別前先進行噪音去除",
    allow_flagging="never",
    examples=[
        ["exampleAudio/15s_2020-03-27_sep1.wav"],
        ["exampleAudio/13s_2020-03-27_sep2.wav"],
        ["exampleAudio/30s_2020-04-23_sep1.wav"],
        ["exampleAudio/15s_2020-04-23_sep2.wav"],
    ],
)

demo.launch(enable_queue=True, debug=True)