Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import numpy as np | |
import torchaudio | |
import yaml | |
from . import asteroid_test | |
from huggingface_hub import hf_hub_download | |
torchaudio.set_audio_backend("sox_io") | |
def get_conf(): | |
conf_filterbank = { | |
'n_filters': 64, | |
'kernel_size': 16, | |
'stride': 8 | |
} | |
conf_masknet = { | |
'in_chan': 64, | |
'n_src': 2, | |
'out_chan': 64, | |
'ff_hid': 256, | |
'ff_activation': "relu", | |
'norm_type': "gLN", | |
'chunk_size': 100, | |
'hop_size': 50, | |
'n_repeats': 2, | |
'mask_act': 'sigmoid', | |
'bidirectional': True, | |
'dropout': 0 | |
} | |
return conf_filterbank, conf_masknet | |
def load_dpt_model(): | |
print('Load Separation Model...') | |
# 👇 從環境變數取得 HF Token | |
from huggingface_hub import hf_hub_download | |
speech_sep_token = os.getenv("SpeechSeparation") | |
if not speech_sep_token: | |
raise EnvironmentError("環境變數 SpeechSeparation 未設定!") | |
# 👇 從 Hugging Face Hub 下載模型權重 | |
model_path = hf_hub_download( | |
repo_id="DeepLearning101/speech-separation", # 替換成你自己的 repo 名稱 | |
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p", | |
token=speech_sep_token | |
) | |
# 👇 原本邏輯完全不變 | |
conf_filterbank, conf_masknet = get_conf() | |
model_class = getattr(asteroid_test, "DPTNet") | |
model = model_class(**conf_filterbank, **conf_masknet) | |
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8) | |
state_dict = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model.eval() | |
return model | |
def dpt_sep_process(wav_path, model=None, outfilename=None): | |
if model is None: | |
model = load_dpt_model() | |
x, sr = torchaudio.load(wav_path) | |
x = x.cpu() | |
with torch.no_grad(): | |
est_sources = model(x) # shape: (1, 2, T) | |
# 確保 est_sources 是 (1, 2, T),再拆分 | |
est_sources = est_sources.squeeze(0) # shape: (2, T) | |
sep_1, sep_2 = est_sources # 拆成兩個 (T, ) 的 tensor | |
# 正規化 | |
max_abs = x[0].abs().max().item() | |
sep_1 = sep_1 * max_abs / sep_1.abs().max().item() | |
sep_2 = sep_2 * max_abs / sep_2.abs().max().item() | |
# 增加 channel 維度,變為 (1, T) | |
sep_1 = sep_1.unsqueeze(0) | |
sep_2 = sep_2.unsqueeze(0) | |
if outfilename is not None: | |
torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr) | |
torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr) | |
torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr) | |
else: | |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr) | |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr) | |
if __name__ == '__main__': | |
print("This module should be used via Flask or Gradio.") |