Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,57 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
| 4 |
import os
|
| 5 |
import soundfile as sf
|
| 6 |
import numpy as np
|
| 7 |
import librosa
|
| 8 |
import warnings
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model = load_dpt_model()
|
| 12 |
|
| 13 |
def separate_audio(input_wav):
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
if file_extension != ".wav":
|
| 21 |
-
data, sr = sf.read(input_wav)
|
| 22 |
-
|
| 23 |
-
# 轉單聲道
|
| 24 |
-
if len(data.shape) > 1:
|
| 25 |
-
data = data.mean(axis=1)
|
| 26 |
-
|
| 27 |
-
# 重採樣到 16kHz
|
| 28 |
if sr != 16000:
|
| 29 |
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# 🎯 你提供的 description 內容(已轉為 HTML)
|
| 47 |
description_html = """
|
|
@@ -87,16 +97,31 @@ description_html = """
|
|
| 87 |
"""
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
|
|
|
| 90 |
interface = gr.Interface(
|
| 91 |
fn=separate_audio,
|
| 92 |
-
inputs=gr.Audio(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
outputs=[
|
| 94 |
-
gr.Audio(label="
|
| 95 |
-
gr.Audio(label="
|
| 96 |
],
|
| 97 |
title="🎙️ 語音分離 Demo - Deep Learning 101",
|
| 98 |
description=description_html,
|
| 99 |
-
allow_flagging="never"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import os
|
| 4 |
import soundfile as sf
|
| 5 |
import numpy as np
|
| 6 |
import librosa
|
| 7 |
import warnings
|
| 8 |
+
import tempfile
|
| 9 |
+
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
| 10 |
|
| 11 |
+
# 過濾警告訊息
|
| 12 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 13 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 14 |
+
|
| 15 |
+
# 加載模型(全局變量)
|
| 16 |
model = load_dpt_model()
|
| 17 |
|
| 18 |
def separate_audio(input_wav):
|
| 19 |
+
"""處理音訊分離的主要函數"""
|
| 20 |
+
try:
|
| 21 |
+
# 步驟 1:讀取音訊並標準化格式
|
| 22 |
+
data, sr = librosa.load(input_wav, sr=None, mono=True)
|
| 23 |
+
|
| 24 |
+
# 步驟 2:強制重採樣到 16kHz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if sr != 16000:
|
| 26 |
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
| 27 |
+
sr = 16000
|
| 28 |
+
|
| 29 |
+
# 步驟 3:生成唯一臨時檔案
|
| 30 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
| 31 |
+
temp_wav = tmp_file.name
|
| 32 |
+
sf.write(temp_wav, data, sr, subtype='PCM_16')
|
| 33 |
+
|
| 34 |
+
# 步驟 4:執行語音分離
|
| 35 |
+
outfilename = "output.wav"
|
| 36 |
+
dpt_sep_process(temp_wav, model=model, outfilename=outfilename)
|
| 37 |
+
|
| 38 |
+
# 步驟 5:清理臨時檔案
|
| 39 |
+
os.remove(temp_wav)
|
| 40 |
+
|
| 41 |
+
# 步驟 6:驗證輸出檔案存在
|
| 42 |
+
output_files = [
|
| 43 |
+
outfilename.replace('.wav', '_sep1.wav'),
|
| 44 |
+
outfilename.replace('.wav', '_sep2.wav')
|
| 45 |
+
]
|
| 46 |
+
if not all(os.path.exists(f) for f in output_files):
|
| 47 |
+
raise gr.Error("分離過程中發生錯誤,請檢查輸入檔案格式!")
|
| 48 |
+
|
| 49 |
+
return output_files
|
| 50 |
+
|
| 51 |
+
except Exception as e:
|
| 52 |
+
# 錯誤處理
|
| 53 |
+
error_msg = f"處理失敗:{str(e)}"
|
| 54 |
+
raise gr.Error(error_msg) from e
|
| 55 |
|
| 56 |
# 🎯 你提供的 description 內容(已轉為 HTML)
|
| 57 |
description_html = """
|
|
|
|
| 97 |
"""
|
| 98 |
|
| 99 |
if __name__ == "__main__":
|
| 100 |
+
# 配置 Gradio 介面
|
| 101 |
interface = gr.Interface(
|
| 102 |
fn=separate_audio,
|
| 103 |
+
inputs=gr.Audio(
|
| 104 |
+
type="filepath",
|
| 105 |
+
label="請上傳混音音檔 (支援格式:mp3/wav/ogg)",
|
| 106 |
+
max_length=300 # 限制 5 分鐘長度
|
| 107 |
+
),
|
| 108 |
outputs=[
|
| 109 |
+
gr.Audio(label="語音軌道 1"),
|
| 110 |
+
gr.Audio(label="語音軌道 2")
|
| 111 |
],
|
| 112 |
title="🎙️ 語音分離 Demo - Deep Learning 101",
|
| 113 |
description=description_html,
|
| 114 |
+
allow_flagging="never",
|
| 115 |
+
examples=[
|
| 116 |
+
[os.path.join("examples", "sample1.wav")],
|
| 117 |
+
[os.path.join("examples", "sample2.mp3")]
|
| 118 |
+
]
|
| 119 |
)
|
| 120 |
|
| 121 |
+
# 啟動服務
|
| 122 |
+
interface.launch(
|
| 123 |
+
server_name="0.0.0.0",
|
| 124 |
+
server_port=7860,
|
| 125 |
+
share=False,
|
| 126 |
+
debug=False
|
| 127 |
+
)
|