Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from random import choices
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from glob import glob
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from tensorflow import keras
|
| 7 |
+
|
| 8 |
+
# Model & Pre-requisites
|
| 9 |
+
model_path = './FastFood.keras'
|
| 10 |
+
ffc = keras.models.load_model(model_path, compile=False)
|
| 11 |
+
|
| 12 |
+
class_names_path = './Fast Food-ClassNames.txt'
|
| 13 |
+
class_names = []
|
| 14 |
+
with open(class_names_path, mode='r') as f:
|
| 15 |
+
class_names = f.read().split(',')[:-1]
|
| 16 |
+
|
| 17 |
+
# Utility Functions
|
| 18 |
+
def predict_fast_food(image, labels=class_names, model=ffc):
|
| 19 |
+
image = tf.cast(image, tf.float32)
|
| 20 |
+
|
| 21 |
+
if image.shape[-2]!=224:
|
| 22 |
+
image = tf.image.resize(image, (224,224))
|
| 23 |
+
|
| 24 |
+
if np.max(image)==255:
|
| 25 |
+
image = image/255.
|
| 26 |
+
|
| 27 |
+
if len(image.shape) == 3:
|
| 28 |
+
image = tf.squeeze(image)[tf.newaxis, ...]
|
| 29 |
+
|
| 30 |
+
pred_proba = model.predict(image, verbose=0)[0]
|
| 31 |
+
label = tf.argmax(pred_proba, axis=-1)
|
| 32 |
+
pred_class = labels[int(label)]
|
| 33 |
+
return pred_class, pred_proba[label]
|
| 34 |
+
else:
|
| 35 |
+
pred_probas = model.predict(image, verbose=0)
|
| 36 |
+
labels = tf.argmax(pred_probas, axis=-1)
|
| 37 |
+
pred_classes = [class_names[label] for label in labels]
|
| 38 |
+
probas = tf.math.reduce_max(pred_probas, axis=-1)
|
| 39 |
+
return pred_classes, probas
|
| 40 |
+
|
| 41 |
+
def load_image(image_path):
|
| 42 |
+
image = tf.io.read_file(image_path)
|
| 43 |
+
image = tf.image.decode_jpeg(image, channels=3)
|
| 44 |
+
image = tf.image.resize(image, (224,224))
|
| 45 |
+
image = tf.image.convert_image_dtype(image, tf.float32)
|
| 46 |
+
image = image/255.
|
| 47 |
+
return image
|
| 48 |
+
|
| 49 |
+
# Load Example Images
|
| 50 |
+
subset_ds_path = './Fast FoodSubset'
|
| 51 |
+
|
| 52 |
+
# Select 5 images per class
|
| 53 |
+
example_image_paths = []
|
| 54 |
+
for class_ss_path in glob(subset_ds_path + '/*'):
|
| 55 |
+
image_paths = glob(class_ss_path + '/*')
|
| 56 |
+
selected_images = choices(image_paths, k=5)
|
| 57 |
+
example_image_paths.extend(selected_images)
|
| 58 |
+
|
| 59 |
+
example_images = [load_image(path).numpy() for path in example_image_paths]
|
| 60 |
+
|
| 61 |
+
# Define Interface
|
| 62 |
+
with gr.Blocks(theme='ocean') as app:
|
| 63 |
+
|
| 64 |
+
# Title or header (optional)
|
| 65 |
+
gr.Markdown("### 🍔 Fast Food Classifier Demo")
|
| 66 |
+
|
| 67 |
+
# Take Image Input
|
| 68 |
+
image_input = gr.Image(label='Image Input')
|
| 69 |
+
|
| 70 |
+
# Prediction Button
|
| 71 |
+
pred_btn = gr.Button('Predict')
|
| 72 |
+
|
| 73 |
+
# 2 Outputs
|
| 74 |
+
with gr.Row():
|
| 75 |
+
|
| 76 |
+
# Output of the Predicted Class
|
| 77 |
+
class_out = gr.Textbox(label='Predicted Class', placeholder='Hmm... Looking for something yummy.')
|
| 78 |
+
proba_out = gr.Textbox(label='Predicted Class Probability', placeholder='I believe on myself but numbers don\'t lie.')
|
| 79 |
+
|
| 80 |
+
# Add example images
|
| 81 |
+
gr.Examples(
|
| 82 |
+
examples=example_images,
|
| 83 |
+
inputs=image_input,
|
| 84 |
+
label="Try these example images"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def predict_fast_food_wrapper(image):
|
| 88 |
+
class_label, proba = predict_fast_food(image)
|
| 89 |
+
return class_label, f'{proba:.3%}'
|
| 90 |
+
|
| 91 |
+
# On Click Action
|
| 92 |
+
pred_btn.click(
|
| 93 |
+
fn=predict_fast_food_wrapper,
|
| 94 |
+
inputs=image_input,
|
| 95 |
+
outputs=[class_out, proba_out]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if __name__ == '__main__':
|
| 99 |
+
# Launch Application
|
| 100 |
+
app.launch()
|