Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,16 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from pinecone import Pinecone
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
# initialize connection to pinecone (get API key at app.pinecone.io)
|
6 |
-
api_key = os.environ.get('PINECONE_API_KEY') or
|
7 |
|
8 |
# configure client
|
9 |
pc = Pinecone(api_key=api_key)
|
@@ -15,32 +22,10 @@ region = os.environ.get('PINECONE_REGION') or 'us-east-1'
|
|
15 |
|
16 |
spec = ServerlessSpec(cloud=cloud, region=region)
|
17 |
|
18 |
-
index_name = 'search-index'
|
19 |
-
|
20 |
-
import time
|
21 |
-
|
22 |
-
existing_indexes = [
|
23 |
-
index_info["name"] for index_info in pc.list_indexes()
|
24 |
-
]
|
25 |
-
|
26 |
-
# # check if index already exists (it shouldn't if this is first time)
|
27 |
-
# if index_name not in existing_indexes:
|
28 |
-
# # if does not exist, create index
|
29 |
-
# pc.create_index(
|
30 |
-
# index_name,
|
31 |
-
# dimension=384, # dimensionality of minilm
|
32 |
-
# metric='cosine',
|
33 |
-
# spec=spec
|
34 |
-
# )
|
35 |
-
# # wait for index to be initialized
|
36 |
-
# while not pc.describe_index(index_name).status['ready']:
|
37 |
-
# time.sleep(1)
|
38 |
|
39 |
# connect to index
|
40 |
index = pc.Index(index_name)
|
41 |
-
|
42 |
-
# view index stats
|
43 |
-
index.describe_index_stats()
|
44 |
|
45 |
from sentence_transformers import SentenceTransformer
|
46 |
# import torch
|
@@ -50,11 +35,6 @@ from sentence_transformers import SentenceTransformer
|
|
50 |
model = SentenceTransformer('intfloat/e5-small')
|
51 |
|
52 |
|
53 |
-
# Set up the Streamlit app
|
54 |
-
st.set_page_config(page_title="Hotel Search", page_icon=":hotel:", layout="wide")
|
55 |
-
|
56 |
-
# Set up the Streamlit app title and search bar
|
57 |
-
st.title("Hotel Search")
|
58 |
query = st.text_input("Enter a search query:", "")
|
59 |
|
60 |
# If the user has entered a search query, search the Pinecone index with the query
|
@@ -62,7 +42,7 @@ if query:
|
|
62 |
# Upsert the embeddings for the query into the Pinecone index
|
63 |
query_embeddings = model.encode(query).tolist()
|
64 |
# now query
|
65 |
-
xc = index.query(vector=query_embeddings, top_k=
|
66 |
|
67 |
# Display the search results
|
68 |
st.write(f"Search results for '{query}':")
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from pinecone import Pinecone
|
4 |
+
# Set up the Streamlit app
|
5 |
+
st.set_page_config(page_title="Hotel Search", page_icon=":hotel:", layout="wide")
|
6 |
|
7 |
+
# Set up the Streamlit app title and search bar
|
8 |
+
st.title("Hotel Search")
|
9 |
+
index_name = st.text_input("Enter a database name:", "")
|
10 |
+
key = st.text_input("Enter a key:", "")
|
11 |
+
namespace = st.text_input("Enter a table name:", "")
|
12 |
# initialize connection to pinecone (get API key at app.pinecone.io)
|
13 |
+
api_key = os.environ.get('PINECONE_API_KEY') or key
|
14 |
|
15 |
# configure client
|
16 |
pc = Pinecone(api_key=api_key)
|
|
|
22 |
|
23 |
spec = ServerlessSpec(cloud=cloud, region=region)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# connect to index
|
27 |
index = pc.Index(index_name)
|
28 |
+
|
|
|
|
|
29 |
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
# import torch
|
|
|
35 |
model = SentenceTransformer('intfloat/e5-small')
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
query = st.text_input("Enter a search query:", "")
|
39 |
|
40 |
# If the user has entered a search query, search the Pinecone index with the query
|
|
|
42 |
# Upsert the embeddings for the query into the Pinecone index
|
43 |
query_embeddings = model.encode(query).tolist()
|
44 |
# now query
|
45 |
+
xc = index.query(vector=query_embeddings, top_k=10, namespace=namespace, include_metadata=True)
|
46 |
|
47 |
# Display the search results
|
48 |
st.write(f"Search results for '{query}':")
|