import streamlit as st import os from pinecone import Pinecone # initialize connection to pinecone (get API key at app.pinecone.io) api_key = os.environ.get('PINECONE_API_KEY') or '68f4d786-9797-4c17-8620-9b5302a3823b' # configure client pc = Pinecone(api_key=api_key) from pinecone import ServerlessSpec cloud = os.environ.get('PINECONE_CLOUD') or 'aws' region = os.environ.get('PINECONE_REGION') or 'us-east-1' spec = ServerlessSpec(cloud=cloud, region=region) index_name = 'search-index' import time existing_indexes = [ index_info["name"] for index_info in pc.list_indexes() ] # # check if index already exists (it shouldn't if this is first time) # if index_name not in existing_indexes: # # if does not exist, create index # pc.create_index( # index_name, # dimension=384, # dimensionality of minilm # metric='cosine', # spec=spec # ) # # wait for index to be initialized # while not pc.describe_index(index_name).status['ready']: # time.sleep(1) # connect to index index = pc.Index(index_name) time.sleep(1) # view index stats index.describe_index_stats() from sentence_transformers import SentenceTransformer # import torch # device = 'cuda' if torch.cuda.is_available() else 'cpu' model = SentenceTransformer('intfloat/e5-small') # Set up the Streamlit app st.set_page_config(page_title="Hotel Search", page_icon=":hotel:", layout="wide") # Set up the Streamlit app title and search bar st.title("Hotel Search") query = st.text_input("Enter a search query:", "") # If the user has entered a search query, search the Pinecone index with the query if query: # Upsert the embeddings for the query into the Pinecone index query_embeddings = model.encode(query).tolist() # now query xc = index.query(vector=query_embeddings, top_k=5, namespace="hotel-detail", include_metadata=True) # Display the search results st.write(f"Search results for '{query}':") for result in xc['matches']: st.write(f"{round(result['score'], 2)}: {result['metadata']['meta_text']}")