File size: 7,635 Bytes
a14e3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca2557
 
 
a14e3ff
 
fca2557
a14e3ff
fca2557
 
a14e3ff
 
 
 
 
 
 
 
 
 
 
fca2557
a14e3ff
 
 
 
 
 
 
 
 
 
 
fca2557
a14e3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca2557
a14e3ff
 
 
fca2557
 
a14e3ff
 
 
fc1f662
 
a14e3ff
 
fca2557
 
 
a14e3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf64a7f
a14e3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca2557
 
85d2c3e
a14e3ff
 
fca2557
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
"""
DeepSurg Technologies Ltd. (c) 2025
Surgical VLLM - v1 
"""

import os
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import BertTokenizer

# Import the VisualBertClassification model (ensure the module is in your PYTHONPATH)
from models.VisualBertClassification_ssgqa import VisualBertClassification

# For SurgVLP encoder
from mmengine.config import Config
from utils.SurgVLP import surgvlp

import random

# For Gradio UI
import gradio as gr

image_files = None
selectedID = 0
question_dropdown = None

#NO GPU is available
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

def seed_everything(seed=27):
    torch.manual_seed(seed)
    #torch.cuda.manual_seed_all(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    #torch.backends.cudnn.deterministic = True
    #torch.backends.cudnn.benchmark = False

def load_visualbert_model(tokenizer, device, num_class=51, encoder_layers=6, n_heads=8, dropout=0.1, emb_dim=300):
    """
    Initialize the VisualBertClassification model and load the checkpoint.
    """
    model = VisualBertClassification(
        vocab_size=len(tokenizer),
        layers=encoder_layers,
        n_heads=n_heads,
        num_class=num_class,
    )
    checkpoint = torch.load("./checkpoint.tar", map_location=device)
    model.load_state_dict(checkpoint["model"])
    model.to(device)
    model.eval()
    return model

def load_surgvlp_encoder(device):
    """
    Load the SurgVLP encoder and its preprocessing function.
    """
    config_path = './utils/config_surgvlp.py'
    configs = Config.fromfile(config_path)['config']
    encoder_model, encoder_preprocess = surgvlp.load(configs.model_config, device=device, pretrain='./SurgVLP2.pth')
    encoder_model.eval()
    return encoder_model, encoder_preprocess

# Label conversion list (mapping model output indices to text labels)
LABEL_LIST = [
    "0", "1", "10", "2", "3", "4", "5", "6", "7", "8", "9",
    "False", "True", "abdominal_wall_cavity", "adhesion", "anatomy",
    "aspirate", "bipolar", "blood_vessel", "blue", "brown", "clip",
    "clipper", "coagulate", "cut", "cystic_artery", "cystic_duct",
    "cystic_pedicle", "cystic_plate", "dissect", "fluid", "gallbladder",
    "grasp", "grasper", "gut", "hook", "instrument", "irrigate", "irrigator",
    "liver", "omentum", "pack", "peritoneum", "red", "retract", "scissors",
    "silver", "specimen_bag", "specimenbag", "white", "yellow"
]

def main():
    seed_everything()
    device = "cpu"
    tokenizer = BertTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
    visualbert_model = load_visualbert_model(tokenizer, device)
    encoder_model, encoder_preprocess = load_surgvlp_encoder(device)

    print("Models loaded successfully.")
    
    # Define the directories containing images and corresponding label files.
    global image_files
    images_dir = "./test_data/images/VID"
    labels_dir = "./test_data/labels/VID/"
    image_files = [os.path.join(images_dir, f) for f in sorted(os.listdir(images_dir)) if f.lower().endswith('.png')]
    random.shuffle(image_files)

    print(f"Found {len(image_files)} images.")

    # Get first 20 images.
    image_files = image_files[:20]

    # Build a predefined questions array (by reading the label files for each image).
    questions = []
    for image_path in image_files:

        image_id = int(os.path.basename(image_path).replace('.png', ''))
        label_path = os.path.join(labels_dir, f"{image_id}.txt")
        try:
            with open(label_path, 'r') as f:
                lines = f.readlines()
                for line in lines:
                    # Split each line at '|' and take the first part as the question.
                    questions.append(line.split("|")[0])
        except Exception as e:
            # If a file is missing, skip it.
            continue
    
    # Remove duplicates (optional) and sort.

    def predict_image(selected_images, question):
        """
        Processes the selected image (by file path) along with the surgical question.
        Returns a text summary that includes the image file name and top-3 predictions.
        """
        if not selected_images:
            return "Please select an image from the list."
        if question.strip() == "":
            return "Please select a question from the dropdown."
        
        # Use the global selectedID to pick the image.
        image_path = image_files[selectedID]
        try:
            pil_image = Image.open(image_path).convert("RGB")
        except Exception as e:
            return f"Could not open image: {str(e)}"
        
        image_processed = encoder_preprocess(pil_image).unsqueeze(0).to(device)
        with torch.no_grad():
            visual_features = encoder_model(image_processed, None, mode='video')['img_emb']
            visual_features /= visual_features.norm(dim=-1, keepdim=True)
            visual_features = visual_features.unsqueeze(1)
        
        inputs = tokenizer(
            [question],
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=77,
        )
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = visualbert_model(inputs, visual_features)
            probabilities = F.softmax(outputs, dim=1)
            topk = torch.topk(probabilities, k=3, dim=1)
        
        topk_scores = topk.values.cpu().numpy().flatten()
        topk_indices = topk.indices.cpu().numpy().flatten()
        top_predictions = [(LABEL_LIST[i], float(score)) for i, score in zip(topk_indices, topk_scores)]
        
        image_name = os.path.basename(image_path)
        output_str = f"Frame: {image_name}\n\nTop 3 Predictions:\n"
        for rank, (lbl, score) in enumerate(top_predictions, start=1):
            output_str += f"Rank {rank}: {lbl} ({score:.4f})\t\t\t"
        print(f"Selected image: {image_name}")
        return output_str

    # Callback to update the global selectedID when the user selects an image from the SelectData.
    def update_selected(selection: gr.SelectData):
        global selectedID
        global question_dropdown
        selectedID = selection.index

        question_dropdown = gr.Dropdown(
            choices=questions[selectedID],
            label="Select a Question"
        )

    with gr.Blocks() as demo:
        gr.Markdown("# DeepSurg Surgical VQA Demo (V1)")
        gr.Markdown("## Cholecystectomy Surgery VLLM")
        gr.Markdown("### Current version supports label-based answers only.")

        #add a logo here
        # Use gr.SelectData to let the user choose one image.
        image_gallery = gr.Gallery(
            value=image_files, 
            label="Select an Image", 
            interactive=True, 
            allow_preview = True,
            preview = True,
            columns=[20],
        )
        
        image_gallery.select(fn=update_selected, inputs=None)
        # Dropdown for selecting a predefined question.

        global question_dropdown
        question_dropdown = gr.Dropdown(
            choices=questions,
            label="Select a Question"
        )
        generate_btn = gr.Button("Generate")
        predictions_output = gr.Textbox(label="Predictions", lines=10)
        
        generate_btn.click(
            fn=predict_image, 
            inputs=[image_gallery, question_dropdown], 
            outputs=predictions_output
        )

    print("Launching the Gradio UI...")
    demo.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    main()