File size: 8,292 Bytes
fb07ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
from threading import Thread
from dotenv import load_dotenv
load_dotenv()

import requests
from bs4 import BeautifulSoup
from newsapi import NewsApiClient
import pandas as pd
import torch
import soundfile as sf
from flask import Flask, request, jsonify, send_file
from transformers import (
    AutoModelForSequenceClassification, AutoTokenizer, pipeline,
    BartTokenizer, BartForConditionalGeneration,
    MarianMTModel, MarianTokenizer,
    BarkModel, AutoProcessor
)

# -------------------------
# Global Setup and Environment Variables
# -------------------------
NEWS_API_KEY = os.getenv("NEWS_API_KEY")  # Set this in your .env file

# Set device for Torch models
device = "cuda:0" if torch.cuda.is_available() else "cpu"

# -------------------------
# Part 1: News Scraping Functions
# -------------------------
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'):
    """
    Fetch news article URLs related to a given company using News API,
    scrape each for headline and content, and save the results to an Excel file.
    """
    newsapi = NewsApiClient(api_key=api_key)
    all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
    articles = all_articles.get('articles', [])
    
    scraped_data = []
    for article in articles:
        url = article.get('url')
        if url:
            scraped_article = scrape_news(url)
            if scraped_article:
                scraped_article['url'] = url
                scraped_data.append(scraped_article)
    
    df = pd.DataFrame(scraped_data)
    df.to_excel(output_file, index=False, header=True)
    print(f"News scraping complete. Data saved to {output_file}")

def scrape_news(url):
    """
    Scrape the news article for headline and content.
    """
    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        print(f"Failed to fetch the page: {url}")
        return None
    soup = BeautifulSoup(response.text, "html.parser")
    headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
    paragraphs = soup.find_all("p")
    article_text = " ".join(p.get_text(strip=True) for p in paragraphs)
    return {"headline": headline, "content": article_text}

# -------------------------
# Part 2: Sentiment Analysis Setup
# -------------------------
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
    sentiment_model_name, 
    torch_dtype=torch.float16,
    device_map="auto"
)
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer)
labels = ["positive", "negative", "neutral"]

# -------------------------
# Part 3: Summarization Setup
# -------------------------
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')

def split_into_chunks(text, tokenizer, max_tokens=1024):
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        tokenized_word = tokenizer.encode(word, add_special_tokens=False)
        if current_length + len(tokenized_word) <= max_tokens:
            current_chunk.append(word)
            current_length += len(tokenized_word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(tokenized_word)
    if current_chunk:
        chunks.append(' '.join(current_chunk))
    return chunks

# -------------------------
# Part 4: Translation Setup (English to Hindi)
# -------------------------
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
trans_model = MarianMTModel.from_pretrained(translation_model_name)

def translate_text(text):
    tokens = trans_tokenizer(text, return_tensors="pt", padding=True)
    translated = trans_model.generate(**tokens)
    return trans_tokenizer.decode(translated[0], skip_special_tokens=True)

# -------------------------
# Part 5: Bark TTS Setup (Hindi)
# -------------------------
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device)
processor = AutoProcessor.from_pretrained("suno/bark")

# -------------------------
# Part 6: Process Company - Main Pipeline Function
# -------------------------
def process_company(company):
    # Step 1: Fetch and scrape news
    fetch_and_scrape_news(company, NEWS_API_KEY)
    df = pd.read_excel('news_articles.xlsx')
    print("Scraped Articles:")
    print(df)
    
    titles, summaries, sentiments, urls = [], [], [], []
    for index, row in df.iterrows():
        article_text = row.get("content", "")
        title = row.get("headline", "No title")
        url = row.get("url", "")
        chunks = split_into_chunks(article_text, bart_tokenizer)
        chunk_summaries = []
        for chunk in chunks:
            inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
            summary_ids = bart_model.generate(inputs.input_ids, num_beams=4, max_length=130, min_length=30, early_stopping=True)
            chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
            chunk_summaries.append(chunk_summary)
        final_summary = ' '.join(chunk_summaries)
        sentiment_result = classifier(final_summary, labels)
        sentiment = sentiment_result["labels"][0]
        titles.append(title)
        summaries.append(final_summary)
        sentiments.append(sentiment)
        urls.append(url)
    
    final_df = pd.DataFrame({
        "Title": titles,
        "Summary": summaries,
        "Sentiment": sentiments,
        "URL": urls
    })
    final_df["Translated Summary"] = final_df["Summary"].apply(translate_text)
    final_df.to_excel('translated_news_articles.xlsx', index=False)
    print("Final processed data with translations:")
    print(final_df)
    
    # Combine all translated summaries into one text prompt
    final_translated_text = "\n\n".join(final_df["Translated Summary"].tolist())
    # Generate speech from the combined Hindi text using Bark
    inputs = processor(final_translated_text, return_tensors="pt").to(device)
    speech_output = bark_model.generate(**inputs)
    audio_path = "final_summary.wav"
    sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
    return audio_path

# -------------------------
# Part 7: Flask Backend Setup
# -------------------------
app = Flask(__name__)

@app.route("/process", methods=["POST"])
def process_route():
    data = request.get_json()
    company = data.get("company")
    if not company:
        return jsonify({"error": "No company provided"}), 400
    audio_path = process_company(company)
    # Return the audio file path as JSON (Gradio will load the file)
    return jsonify({"audio_path": audio_path})

# -------------------------
# Part 8: Gradio Interface Setup
# -------------------------
def gradio_interface(company):
    # Call the Flask endpoint
    response = requests.post("http://127.0.0.1:5000/process", json={"company": company})
    result = response.json()
    # Return the audio file path; Gradio's audio output type will read the file.
    return result.get("audio_path")

def launch_gradio():
    import gradio as gr
    iface = gr.Interface(
        fn=gradio_interface,
        inputs=gr.Textbox(label="Enter Company Name"),
        outputs=gr.Audio(type="filepath", label="News Summary Audio (Hindi)"),
        title="News Summarization & TTS",
        description="Enter a company name to fetch news, generate a Hindi summary, and listen to the audio."
    )
    iface.launch()

# -------------------------
# Main: Run Flask and Gradio
# -------------------------
if __name__ == "__main__":
    # Run the Flask app in a separate thread.
    flask_thread = Thread(target=lambda: app.run(host="0.0.0.0", port=5000, debug=False, use_reloader=False))
    flask_thread.start()
    # Launch the Gradio interface.
    launch_gradio()