Spaces:
Running
Running
File size: 8,292 Bytes
fb07ec5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
from threading import Thread
from dotenv import load_dotenv
load_dotenv()
import requests
from bs4 import BeautifulSoup
from newsapi import NewsApiClient
import pandas as pd
import torch
import soundfile as sf
from flask import Flask, request, jsonify, send_file
from transformers import (
AutoModelForSequenceClassification, AutoTokenizer, pipeline,
BartTokenizer, BartForConditionalGeneration,
MarianMTModel, MarianTokenizer,
BarkModel, AutoProcessor
)
# -------------------------
# Global Setup and Environment Variables
# -------------------------
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
# Set device for Torch models
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# -------------------------
# Part 1: News Scraping Functions
# -------------------------
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'):
"""
Fetch news article URLs related to a given company using News API,
scrape each for headline and content, and save the results to an Excel file.
"""
newsapi = NewsApiClient(api_key=api_key)
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
articles = all_articles.get('articles', [])
scraped_data = []
for article in articles:
url = article.get('url')
if url:
scraped_article = scrape_news(url)
if scraped_article:
scraped_article['url'] = url
scraped_data.append(scraped_article)
df = pd.DataFrame(scraped_data)
df.to_excel(output_file, index=False, header=True)
print(f"News scraping complete. Data saved to {output_file}")
def scrape_news(url):
"""
Scrape the news article for headline and content.
"""
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to fetch the page: {url}")
return None
soup = BeautifulSoup(response.text, "html.parser")
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
paragraphs = soup.find_all("p")
article_text = " ".join(p.get_text(strip=True) for p in paragraphs)
return {"headline": headline, "content": article_text}
# -------------------------
# Part 2: Sentiment Analysis Setup
# -------------------------
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
sentiment_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer)
labels = ["positive", "negative", "neutral"]
# -------------------------
# Part 3: Summarization Setup
# -------------------------
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
def split_into_chunks(text, tokenizer, max_tokens=1024):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
tokenized_word = tokenizer.encode(word, add_special_tokens=False)
if current_length + len(tokenized_word) <= max_tokens:
current_chunk.append(word)
current_length += len(tokenized_word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(tokenized_word)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# -------------------------
# Part 4: Translation Setup (English to Hindi)
# -------------------------
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
trans_model = MarianMTModel.from_pretrained(translation_model_name)
def translate_text(text):
tokens = trans_tokenizer(text, return_tensors="pt", padding=True)
translated = trans_model.generate(**tokens)
return trans_tokenizer.decode(translated[0], skip_special_tokens=True)
# -------------------------
# Part 5: Bark TTS Setup (Hindi)
# -------------------------
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
# -------------------------
# Part 6: Process Company - Main Pipeline Function
# -------------------------
def process_company(company):
# Step 1: Fetch and scrape news
fetch_and_scrape_news(company, NEWS_API_KEY)
df = pd.read_excel('news_articles.xlsx')
print("Scraped Articles:")
print(df)
titles, summaries, sentiments, urls = [], [], [], []
for index, row in df.iterrows():
article_text = row.get("content", "")
title = row.get("headline", "No title")
url = row.get("url", "")
chunks = split_into_chunks(article_text, bart_tokenizer)
chunk_summaries = []
for chunk in chunks:
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = bart_model.generate(inputs.input_ids, num_beams=4, max_length=130, min_length=30, early_stopping=True)
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
chunk_summaries.append(chunk_summary)
final_summary = ' '.join(chunk_summaries)
sentiment_result = classifier(final_summary, labels)
sentiment = sentiment_result["labels"][0]
titles.append(title)
summaries.append(final_summary)
sentiments.append(sentiment)
urls.append(url)
final_df = pd.DataFrame({
"Title": titles,
"Summary": summaries,
"Sentiment": sentiments,
"URL": urls
})
final_df["Translated Summary"] = final_df["Summary"].apply(translate_text)
final_df.to_excel('translated_news_articles.xlsx', index=False)
print("Final processed data with translations:")
print(final_df)
# Combine all translated summaries into one text prompt
final_translated_text = "\n\n".join(final_df["Translated Summary"].tolist())
# Generate speech from the combined Hindi text using Bark
inputs = processor(final_translated_text, return_tensors="pt").to(device)
speech_output = bark_model.generate(**inputs)
audio_path = "final_summary.wav"
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
return audio_path
# -------------------------
# Part 7: Flask Backend Setup
# -------------------------
app = Flask(__name__)
@app.route("/process", methods=["POST"])
def process_route():
data = request.get_json()
company = data.get("company")
if not company:
return jsonify({"error": "No company provided"}), 400
audio_path = process_company(company)
# Return the audio file path as JSON (Gradio will load the file)
return jsonify({"audio_path": audio_path})
# -------------------------
# Part 8: Gradio Interface Setup
# -------------------------
def gradio_interface(company):
# Call the Flask endpoint
response = requests.post("http://127.0.0.1:5000/process", json={"company": company})
result = response.json()
# Return the audio file path; Gradio's audio output type will read the file.
return result.get("audio_path")
def launch_gradio():
import gradio as gr
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(label="Enter Company Name"),
outputs=gr.Audio(type="filepath", label="News Summary Audio (Hindi)"),
title="News Summarization & TTS",
description="Enter a company name to fetch news, generate a Hindi summary, and listen to the audio."
)
iface.launch()
# -------------------------
# Main: Run Flask and Gradio
# -------------------------
if __name__ == "__main__":
# Run the Flask app in a separate thread.
flask_thread = Thread(target=lambda: app.run(host="0.0.0.0", port=5000, debug=False, use_reloader=False))
flask_thread.start()
# Launch the Gradio interface.
launch_gradio()
|