import os import torch from langchain.chains import RetrievalQA from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_community.llms import HuggingFaceHub # Check for GPU availability DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" # Global variables conversation_retrieval_chain = None chat_history = [] llm_hub = None embeddings = None def init_llm(): global llm_hub, embeddings # Ensure API key is set in Hugging Face Spaces hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if not hf_token: raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.") model_id = "tiiuae/falcon-7b-instruct" llm_hub = HuggingFaceHub(repo_id=model_id, model_kwargs={"temperature": 0.1, "max_new_tokens": 600, "max_length": 600}) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": DEVICE} ) def process_document(document_path): global conversation_retrieval_chain # Ensure LLM and embeddings are initialized if not llm_hub or not embeddings: init_llm() loader = PyPDFLoader(document_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) texts = text_splitter.split_documents(documents) db = Chroma.from_documents(texts, embedding=embeddings, persist_directory="./chroma_db") conversation_retrieval_chain = RetrievalQA.from_chain_type( llm=llm_hub, chain_type="stuff", retriever=db.as_retriever(search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25}), return_source_documents=False ) def process_prompt(prompt): global conversation_retrieval_chain, chat_history if not conversation_retrieval_chain: return "No document has been processed yet. Please upload a PDF first." output = conversation_retrieval_chain({"query": prompt, "chat_history": chat_history}) answer = output["answer"] chat_history.append((prompt, answer)) return answer