File size: 20,913 Bytes
50e6701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import torch
import os
import json
import struct
import numpy as np
from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_from_grid_torch
import folder_paths
import comfy.model_management
from comfy.cli_args import args


class EmptyLatentHunyuan3Dv2:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}),
                             "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
                             }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "latent/3d"

    def generate(self, resolution, batch_size):
        latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device())
        return ({"samples": latent, "type": "hunyuan3dv2"}, )


class Hunyuan3Dv2Conditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
                             }}

    RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
    RETURN_NAMES = ("positive", "negative")

    FUNCTION = "encode"

    CATEGORY = "conditioning/video_models"

    def encode(self, clip_vision_output):
        embeds = clip_vision_output.last_hidden_state
        positive = [[embeds, {}]]
        negative = [[torch.zeros_like(embeds), {}]]
        return (positive, negative)


class Hunyuan3Dv2ConditioningMultiView:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {},
                "optional": {"front": ("CLIP_VISION_OUTPUT",),
                             "left": ("CLIP_VISION_OUTPUT",),
                             "back": ("CLIP_VISION_OUTPUT",),
                             "right": ("CLIP_VISION_OUTPUT",), }}

    RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
    RETURN_NAMES = ("positive", "negative")

    FUNCTION = "encode"

    CATEGORY = "conditioning/video_models"

    def encode(self, front=None, left=None, back=None, right=None):
        all_embeds = [front, left, back, right]
        out = []
        pos_embeds = None
        for i, e in enumerate(all_embeds):
            if e is not None:
                if pos_embeds is None:
                    pos_embeds = get_1d_sincos_pos_embed_from_grid_torch(e.last_hidden_state.shape[-1], torch.arange(4))
                out.append(e.last_hidden_state + pos_embeds[i].reshape(1, 1, -1))

        embeds = torch.cat(out, dim=1)
        positive = [[embeds, {}]]
        negative = [[torch.zeros_like(embeds), {}]]
        return (positive, negative)


class VOXEL:
    def __init__(self, data):
        self.data = data


class VAEDecodeHunyuan3D:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"samples": ("LATENT", ),
                             "vae": ("VAE", ),
                             "num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}),
                             "octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}),
                             }}
    RETURN_TYPES = ("VOXEL",)
    FUNCTION = "decode"

    CATEGORY = "latent/3d"

    def decode(self, vae, samples, num_chunks, octree_resolution):
        voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
        return (voxels, )


def voxel_to_mesh(voxels, threshold=0.5, device=None):
    if device is None:
        device = torch.device("cpu")
    voxels = voxels.to(device)

    binary = (voxels > threshold).float()
    padded = torch.nn.functional.pad(binary, (1, 1, 1, 1, 1, 1), 'constant', 0)

    D, H, W = binary.shape

    neighbors = torch.tensor([
        [0, 0, 1],
        [0, 0, -1],
        [0, 1, 0],
        [0, -1, 0],
        [1, 0, 0],
        [-1, 0, 0]
    ], device=device)

    z, y, x = torch.meshgrid(
        torch.arange(D, device=device),
        torch.arange(H, device=device),
        torch.arange(W, device=device),
        indexing='ij'
    )
    voxel_indices = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)

    solid_mask = binary.flatten() > 0
    solid_indices = voxel_indices[solid_mask]

    corner_offsets = [
        torch.tensor([
            [0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1]
        ], device=device),
        torch.tensor([
            [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]
        ], device=device),
        torch.tensor([
            [0, 1, 0], [1, 1, 0], [1, 1, 1], [0, 1, 1]
        ], device=device),
        torch.tensor([
            [0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]
        ], device=device),
        torch.tensor([
            [1, 0, 1], [1, 1, 1], [1, 1, 0], [1, 0, 0]
        ], device=device),
        torch.tensor([
            [0, 1, 0], [0, 1, 1], [0, 0, 1], [0, 0, 0]
        ], device=device)
    ]

    all_vertices = []
    all_indices = []

    vertex_count = 0

    for face_idx, offset in enumerate(neighbors):
        neighbor_indices = solid_indices + offset

        padded_indices = neighbor_indices + 1

        is_exposed = padded[
            padded_indices[:, 0],
            padded_indices[:, 1],
            padded_indices[:, 2]
        ] == 0

        if not is_exposed.any():
            continue

        exposed_indices = solid_indices[is_exposed]

        corners = corner_offsets[face_idx].unsqueeze(0)

        face_vertices = exposed_indices.unsqueeze(1) + corners

        all_vertices.append(face_vertices.reshape(-1, 3))

        num_faces = exposed_indices.shape[0]
        face_indices = torch.arange(
            vertex_count,
            vertex_count + 4 * num_faces,
            device=device
        ).reshape(-1, 4)

        all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 1], face_indices[:, 2]], dim=1))
        all_indices.append(torch.stack([face_indices[:, 0], face_indices[:, 2], face_indices[:, 3]], dim=1))

        vertex_count += 4 * num_faces

    if len(all_vertices) > 0:
        vertices = torch.cat(all_vertices, dim=0)
        faces = torch.cat(all_indices, dim=0)
    else:
        vertices = torch.zeros((1, 3))
        faces = torch.zeros((1, 3))

    v_min = 0
    v_max = max(voxels.shape)

    vertices = vertices - (v_min + v_max) / 2

    scale = (v_max - v_min) / 2
    if scale > 0:
        vertices = vertices / scale

    vertices = torch.fliplr(vertices)
    return vertices, faces

def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
    if device is None:
        device = torch.device("cpu")
    voxels = voxels.to(device)

    D, H, W = voxels.shape

    padded = torch.nn.functional.pad(voxels, (1, 1, 1, 1, 1, 1), 'constant', 0)
    z, y, x = torch.meshgrid(
        torch.arange(D, device=device),
        torch.arange(H, device=device),
        torch.arange(W, device=device),
        indexing='ij'
    )
    cell_positions = torch.stack([z.flatten(), y.flatten(), x.flatten()], dim=1)

    corner_offsets = torch.tensor([
        [0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
        [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]
    ], device=device)

    corner_values = torch.zeros((cell_positions.shape[0], 8), device=device)
    for c, (dz, dy, dx) in enumerate(corner_offsets):
        corner_values[:, c] = padded[
            cell_positions[:, 0] + dz,
            cell_positions[:, 1] + dy,
            cell_positions[:, 2] + dx
        ]

    corner_signs = corner_values > threshold
    has_inside = torch.any(corner_signs, dim=1)
    has_outside = torch.any(~corner_signs, dim=1)
    contains_surface = has_inside & has_outside

    active_cells = cell_positions[contains_surface]
    active_signs = corner_signs[contains_surface]
    active_values = corner_values[contains_surface]

    if active_cells.shape[0] == 0:
        return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)

    edges = torch.tensor([
        [0, 1], [0, 2], [0, 4], [1, 3],
        [1, 5], [2, 3], [2, 6], [3, 7],
        [4, 5], [4, 6], [5, 7], [6, 7]
    ], device=device)

    cell_vertices = {}
    progress = comfy.utils.ProgressBar(100)

    for edge_idx, (e1, e2) in enumerate(edges):
        progress.update(1)
        crossing = active_signs[:, e1] != active_signs[:, e2]
        if not crossing.any():
            continue

        cell_indices = torch.nonzero(crossing, as_tuple=True)[0]

        v1 = active_values[cell_indices, e1]
        v2 = active_values[cell_indices, e2]

        t = torch.zeros_like(v1, device=device)
        denom = v2 - v1
        valid = denom != 0
        t[valid] = (threshold - v1[valid]) / denom[valid]
        t[~valid] = 0.5

        p1 = corner_offsets[e1].float()
        p2 = corner_offsets[e2].float()

        intersection = p1.unsqueeze(0) + t.unsqueeze(1) * (p2.unsqueeze(0) - p1.unsqueeze(0))

        for i, point in zip(cell_indices.tolist(), intersection):
            if i not in cell_vertices:
                cell_vertices[i] = []
            cell_vertices[i].append(point)

    # Calculate the final vertices as the average of intersection points for each cell
    vertices = []
    vertex_lookup = {}

    vert_progress_mod = round(len(cell_vertices)/50)

    for i, points in cell_vertices.items():
        if not i % vert_progress_mod:
            progress.update(1)

        if points:
            vertex = torch.stack(points).mean(dim=0)
            vertex = vertex + active_cells[i].float()
            vertex_lookup[tuple(active_cells[i].tolist())] = len(vertices)
            vertices.append(vertex)

    if not vertices:
        return torch.zeros((0, 3), device=device), torch.zeros((0, 3), dtype=torch.long, device=device)

    final_vertices = torch.stack(vertices)

    inside_corners_mask = active_signs
    outside_corners_mask = ~active_signs

    inside_counts = inside_corners_mask.sum(dim=1, keepdim=True).float()
    outside_counts = outside_corners_mask.sum(dim=1, keepdim=True).float()

    inside_pos = torch.zeros((active_cells.shape[0], 3), device=device)
    outside_pos = torch.zeros((active_cells.shape[0], 3), device=device)

    for i in range(8):
        mask_inside = inside_corners_mask[:, i].unsqueeze(1)
        mask_outside = outside_corners_mask[:, i].unsqueeze(1)
        inside_pos += corner_offsets[i].float().unsqueeze(0) * mask_inside
        outside_pos += corner_offsets[i].float().unsqueeze(0) * mask_outside

    inside_pos /= inside_counts
    outside_pos /= outside_counts
    gradients = inside_pos - outside_pos

    pos_dirs = torch.tensor([
        [1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]
    ], device=device)

    cross_products = [
        torch.linalg.cross(pos_dirs[i].float(), pos_dirs[j].float())
        for i in range(3) for j in range(i+1, 3)
    ]

    faces = []
    all_keys = set(vertex_lookup.keys())

    face_progress_mod = round(len(active_cells)/38*3)

    for pair_idx, (i, j) in enumerate([(0,1), (0,2), (1,2)]):
        dir_i = pos_dirs[i]
        dir_j = pos_dirs[j]
        cross_product = cross_products[pair_idx]

        ni_positions = active_cells + dir_i
        nj_positions = active_cells + dir_j
        diag_positions = active_cells + dir_i + dir_j

        alignments = torch.matmul(gradients, cross_product)

        valid_quads = []
        quad_indices = []

        for idx, active_cell in enumerate(active_cells):
            if not idx % face_progress_mod:
                progress.update(1)
            cell_key = tuple(active_cell.tolist())
            ni_key = tuple(ni_positions[idx].tolist())
            nj_key = tuple(nj_positions[idx].tolist())
            diag_key = tuple(diag_positions[idx].tolist())

            if cell_key in all_keys and ni_key in all_keys and nj_key in all_keys and diag_key in all_keys:
                v0 = vertex_lookup[cell_key]
                v1 = vertex_lookup[ni_key]
                v2 = vertex_lookup[nj_key]
                v3 = vertex_lookup[diag_key]

                valid_quads.append((v0, v1, v2, v3))
                quad_indices.append(idx)

        for q_idx, (v0, v1, v2, v3) in enumerate(valid_quads):
            cell_idx = quad_indices[q_idx]
            if alignments[cell_idx] > 0:
                faces.append(torch.tensor([v0, v1, v3], device=device, dtype=torch.long))
                faces.append(torch.tensor([v0, v3, v2], device=device, dtype=torch.long))
            else:
                faces.append(torch.tensor([v0, v3, v1], device=device, dtype=torch.long))
                faces.append(torch.tensor([v0, v2, v3], device=device, dtype=torch.long))

    if faces:
        faces = torch.stack(faces)
    else:
        faces = torch.zeros((0, 3), dtype=torch.long, device=device)

    v_min = 0
    v_max = max(D, H, W)

    final_vertices = final_vertices - (v_min + v_max) / 2

    scale = (v_max - v_min) / 2
    if scale > 0:
        final_vertices = final_vertices / scale

    final_vertices = torch.fliplr(final_vertices)

    return final_vertices, faces

class MESH:
    def __init__(self, vertices, faces):
        self.vertices = vertices
        self.faces = faces


class VoxelToMeshBasic:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"voxel": ("VOXEL", ),
                             "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("MESH",)
    FUNCTION = "decode"

    CATEGORY = "3d"

    def decode(self, voxel, threshold):
        vertices = []
        faces = []
        for x in voxel.data:
            v, f = voxel_to_mesh(x, threshold=threshold, device=None)
            vertices.append(v)
            faces.append(f)

        return (MESH(torch.stack(vertices), torch.stack(faces)), )

class VoxelToMesh:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"voxel": ("VOXEL", ),
                             "algorithm": (["surface net", "basic"], ),
                             "threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("MESH",)
    FUNCTION = "decode"

    CATEGORY = "3d"

    def decode(self, voxel, algorithm, threshold):
        vertices = []
        faces = []

        if algorithm == "basic":
            mesh_function = voxel_to_mesh
        elif algorithm == "surface net":
            mesh_function = voxel_to_mesh_surfnet

        for x in voxel.data:
            v, f = mesh_function(x, threshold=threshold, device=None)
            vertices.append(v)
            faces.append(f)

        return (MESH(torch.stack(vertices), torch.stack(faces)), )


def save_glb(vertices, faces, filepath, metadata=None):
    """

    Save PyTorch tensor vertices and faces as a GLB file without external dependencies.



    Parameters:

    vertices: torch.Tensor of shape (N, 3) - The vertex coordinates

    faces: torch.Tensor of shape (M, 3) - The face indices (triangle faces)

    filepath: str - Output filepath (should end with .glb)

    """

    # Convert tensors to numpy arrays
    vertices_np = vertices.cpu().numpy().astype(np.float32)
    faces_np = faces.cpu().numpy().astype(np.uint32)

    vertices_buffer = vertices_np.tobytes()
    indices_buffer = faces_np.tobytes()

    def pad_to_4_bytes(buffer):
        padding_length = (4 - (len(buffer) % 4)) % 4
        return buffer + b'\x00' * padding_length

    vertices_buffer_padded = pad_to_4_bytes(vertices_buffer)
    indices_buffer_padded = pad_to_4_bytes(indices_buffer)

    buffer_data = vertices_buffer_padded + indices_buffer_padded

    vertices_byte_length = len(vertices_buffer)
    vertices_byte_offset = 0
    indices_byte_length = len(indices_buffer)
    indices_byte_offset = len(vertices_buffer_padded)

    gltf = {
        "asset": {"version": "2.0", "generator": "ComfyUI"},
        "buffers": [
            {
                "byteLength": len(buffer_data)
            }
        ],
        "bufferViews": [
            {
                "buffer": 0,
                "byteOffset": vertices_byte_offset,
                "byteLength": vertices_byte_length,
                "target": 34962  # ARRAY_BUFFER
            },
            {
                "buffer": 0,
                "byteOffset": indices_byte_offset,
                "byteLength": indices_byte_length,
                "target": 34963  # ELEMENT_ARRAY_BUFFER
            }
        ],
        "accessors": [
            {
                "bufferView": 0,
                "byteOffset": 0,
                "componentType": 5126,  # FLOAT
                "count": len(vertices_np),
                "type": "VEC3",
                "max": vertices_np.max(axis=0).tolist(),
                "min": vertices_np.min(axis=0).tolist()
            },
            {
                "bufferView": 1,
                "byteOffset": 0,
                "componentType": 5125,  # UNSIGNED_INT
                "count": faces_np.size,
                "type": "SCALAR"
            }
        ],
        "meshes": [
            {
                "primitives": [
                    {
                        "attributes": {
                            "POSITION": 0
                        },
                        "indices": 1,
                        "mode": 4  # TRIANGLES
                    }
                ]
            }
        ],
        "nodes": [
            {
                "mesh": 0
            }
        ],
        "scenes": [
            {
                "nodes": [0]
            }
        ],
        "scene": 0
    }

    if metadata is not None:
        gltf["asset"]["extras"] = metadata

    # Convert the JSON to bytes
    gltf_json = json.dumps(gltf).encode('utf8')

    def pad_json_to_4_bytes(buffer):
        padding_length = (4 - (len(buffer) % 4)) % 4
        return buffer + b' ' * padding_length

    gltf_json_padded = pad_json_to_4_bytes(gltf_json)

    # Create the GLB header
    # Magic glTF
    glb_header = struct.pack('<4sII', b'glTF', 2, 12 + 8 + len(gltf_json_padded) + 8 + len(buffer_data))

    # Create JSON chunk header (chunk type 0)
    json_chunk_header = struct.pack('<II', len(gltf_json_padded), 0x4E4F534A)  # "JSON" in little endian

    # Create BIN chunk header (chunk type 1)
    bin_chunk_header = struct.pack('<II', len(buffer_data), 0x004E4942)  # "BIN\0" in little endian

    # Write the GLB file
    with open(filepath, 'wb') as f:
        f.write(glb_header)
        f.write(json_chunk_header)
        f.write(gltf_json_padded)
        f.write(bin_chunk_header)
        f.write(buffer_data)

    return filepath


class SaveGLB:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"mesh": ("MESH", ),
                             "filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, }

    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "3d"

    def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None):
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
        results = []

        metadata = {}
        if not args.disable_metadata:
            if prompt is not None:
                metadata["prompt"] = json.dumps(prompt)
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata[x] = json.dumps(extra_pnginfo[x])

        for i in range(mesh.vertices.shape[0]):
            f = f"{filename}_{counter:05}_.glb"
            save_glb(mesh.vertices[i], mesh.faces[i], os.path.join(full_output_folder, f), metadata)
            results.append({
                "filename": f,
                "subfolder": subfolder,
                "type": "output"
            })
            counter += 1
        return {"ui": {"3d": results}}


NODE_CLASS_MAPPINGS = {
    "EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2,
    "Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning,
    "Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
    "VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
    "VoxelToMeshBasic": VoxelToMeshBasic,
    "VoxelToMesh": VoxelToMesh,
    "SaveGLB": SaveGLB,
}