Spaces:
Running
on
Zero
Running
on
Zero
| # Original from: https://github.com/ace-step/ACE-Step/blob/main/models/lyrics_utils/lyric_encoder.py | |
| from typing import Optional, Tuple, Union | |
| import math | |
| import torch | |
| from torch import nn | |
| import comfy.model_management | |
| class ConvolutionModule(nn.Module): | |
| """ConvolutionModule in Conformer model.""" | |
| def __init__(self, | |
| channels: int, | |
| kernel_size: int = 15, | |
| activation: nn.Module = nn.ReLU(), | |
| norm: str = "batch_norm", | |
| causal: bool = False, | |
| bias: bool = True, | |
| dtype=None, device=None, operations=None): | |
| """Construct an ConvolutionModule object. | |
| Args: | |
| channels (int): The number of channels of conv layers. | |
| kernel_size (int): Kernel size of conv layers. | |
| causal (int): Whether use causal convolution or not | |
| """ | |
| super().__init__() | |
| self.pointwise_conv1 = operations.Conv1d( | |
| channels, | |
| 2 * channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| dtype=dtype, device=device | |
| ) | |
| # self.lorder is used to distinguish if it's a causal convolution, | |
| # if self.lorder > 0: it's a causal convolution, the input will be | |
| # padded with self.lorder frames on the left in forward. | |
| # else: it's a symmetrical convolution | |
| if causal: | |
| padding = 0 | |
| self.lorder = kernel_size - 1 | |
| else: | |
| # kernel_size should be an odd number for none causal convolution | |
| assert (kernel_size - 1) % 2 == 0 | |
| padding = (kernel_size - 1) // 2 | |
| self.lorder = 0 | |
| self.depthwise_conv = operations.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| stride=1, | |
| padding=padding, | |
| groups=channels, | |
| bias=bias, | |
| dtype=dtype, device=device | |
| ) | |
| assert norm in ['batch_norm', 'layer_norm'] | |
| if norm == "batch_norm": | |
| self.use_layer_norm = False | |
| self.norm = nn.BatchNorm1d(channels) | |
| else: | |
| self.use_layer_norm = True | |
| self.norm = operations.LayerNorm(channels, dtype=dtype, device=device) | |
| self.pointwise_conv2 = operations.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| bias=bias, | |
| dtype=dtype, device=device | |
| ) | |
| self.activation = activation | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0)), | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute convolution module. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, channels). | |
| mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), | |
| (0, 0, 0) means fake mask. | |
| cache (torch.Tensor): left context cache, it is only | |
| used in causal convolution (#batch, channels, cache_t), | |
| (0, 0, 0) meas fake cache. | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, channels). | |
| """ | |
| # exchange the temporal dimension and the feature dimension | |
| x = x.transpose(1, 2) # (#batch, channels, time) | |
| # mask batch padding | |
| if mask_pad.size(2) > 0: # time > 0 | |
| x.masked_fill_(~mask_pad, 0.0) | |
| if self.lorder > 0: | |
| if cache.size(2) == 0: # cache_t == 0 | |
| x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0) | |
| else: | |
| assert cache.size(0) == x.size(0) # equal batch | |
| assert cache.size(1) == x.size(1) # equal channel | |
| x = torch.cat((cache, x), dim=2) | |
| assert (x.size(2) > self.lorder) | |
| new_cache = x[:, :, -self.lorder:] | |
| else: | |
| # It's better we just return None if no cache is required, | |
| # However, for JIT export, here we just fake one tensor instead of | |
| # None. | |
| new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
| # GLU mechanism | |
| x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
| x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
| # 1D Depthwise Conv | |
| x = self.depthwise_conv(x) | |
| if self.use_layer_norm: | |
| x = x.transpose(1, 2) | |
| x = self.activation(self.norm(x)) | |
| if self.use_layer_norm: | |
| x = x.transpose(1, 2) | |
| x = self.pointwise_conv2(x) | |
| # mask batch padding | |
| if mask_pad.size(2) > 0: # time > 0 | |
| x.masked_fill_(~mask_pad, 0.0) | |
| return x.transpose(1, 2), new_cache | |
| class PositionwiseFeedForward(torch.nn.Module): | |
| """Positionwise feed forward layer. | |
| FeedForward are appied on each position of the sequence. | |
| The output dim is same with the input dim. | |
| Args: | |
| idim (int): Input dimenstion. | |
| hidden_units (int): The number of hidden units. | |
| dropout_rate (float): Dropout rate. | |
| activation (torch.nn.Module): Activation function | |
| """ | |
| def __init__( | |
| self, | |
| idim: int, | |
| hidden_units: int, | |
| dropout_rate: float, | |
| activation: torch.nn.Module = torch.nn.ReLU(), | |
| dtype=None, device=None, operations=None | |
| ): | |
| """Construct a PositionwiseFeedForward object.""" | |
| super(PositionwiseFeedForward, self).__init__() | |
| self.w_1 = operations.Linear(idim, hidden_units, dtype=dtype, device=device) | |
| self.activation = activation | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| self.w_2 = operations.Linear(hidden_units, idim, dtype=dtype, device=device) | |
| def forward(self, xs: torch.Tensor) -> torch.Tensor: | |
| """Forward function. | |
| Args: | |
| xs: input tensor (B, L, D) | |
| Returns: | |
| output tensor, (B, L, D) | |
| """ | |
| return self.w_2(self.dropout(self.activation(self.w_1(xs)))) | |
| class Swish(torch.nn.Module): | |
| """Construct an Swish object.""" | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """Return Swish activation function.""" | |
| return x * torch.sigmoid(x) | |
| class MultiHeadedAttention(nn.Module): | |
| """Multi-Head Attention layer. | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| key_bias: bool = True, | |
| dtype=None, device=None, operations=None): | |
| """Construct an MultiHeadedAttention object.""" | |
| super().__init__() | |
| assert n_feat % n_head == 0 | |
| # We assume d_v always equals d_k | |
| self.d_k = n_feat // n_head | |
| self.h = n_head | |
| self.linear_q = operations.Linear(n_feat, n_feat, dtype=dtype, device=device) | |
| self.linear_k = operations.Linear(n_feat, n_feat, bias=key_bias, dtype=dtype, device=device) | |
| self.linear_v = operations.Linear(n_feat, n_feat, dtype=dtype, device=device) | |
| self.linear_out = operations.Linear(n_feat, n_feat, dtype=dtype, device=device) | |
| self.dropout = nn.Dropout(p=dropout_rate) | |
| def forward_qkv( | |
| self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Transform query, key and value. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| Returns: | |
| torch.Tensor: Transformed query tensor, size | |
| (#batch, n_head, time1, d_k). | |
| torch.Tensor: Transformed key tensor, size | |
| (#batch, n_head, time2, d_k). | |
| torch.Tensor: Transformed value tensor, size | |
| (#batch, n_head, time2, d_k). | |
| """ | |
| n_batch = query.size(0) | |
| q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) | |
| k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) | |
| v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) | |
| q = q.transpose(1, 2) # (batch, head, time1, d_k) | |
| k = k.transpose(1, 2) # (batch, head, time2, d_k) | |
| v = v.transpose(1, 2) # (batch, head, time2, d_k) | |
| return q, k, v | |
| def forward_attention( | |
| self, | |
| value: torch.Tensor, | |
| scores: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
| ) -> torch.Tensor: | |
| """Compute attention context vector. | |
| Args: | |
| value (torch.Tensor): Transformed value, size | |
| (#batch, n_head, time2, d_k). | |
| scores (torch.Tensor): Attention score, size | |
| (#batch, n_head, time1, time2). | |
| mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
| (#batch, time1, time2), (0, 0, 0) means fake mask. | |
| Returns: | |
| torch.Tensor: Transformed value (#batch, time1, d_model) | |
| weighted by the attention score (#batch, time1, time2). | |
| """ | |
| n_batch = value.size(0) | |
| if mask is not None and mask.size(2) > 0: # time2 > 0 | |
| mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) | |
| # For last chunk, time2 might be larger than scores.size(-1) | |
| mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) | |
| scores = scores.masked_fill(mask, -float('inf')) | |
| attn = torch.softmax(scores, dim=-1).masked_fill( | |
| mask, 0.0) # (batch, head, time1, time2) | |
| else: | |
| attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) | |
| p_attn = self.dropout(attn) | |
| x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) | |
| x = (x.transpose(1, 2).contiguous().view(n_batch, -1, | |
| self.h * self.d_k) | |
| ) # (batch, time1, d_model) | |
| return self.linear_out(x) # (batch, time1, d_model) | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute scaled dot product attention. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2). | |
| 1.When applying cross attention between decoder and encoder, | |
| the batch padding mask for input is in (#batch, 1, T) shape. | |
| 2.When applying self attention of encoder, | |
| the mask is in (#batch, T, T) shape. | |
| 3.When applying self attention of decoder, | |
| the mask is in (#batch, L, L) shape. | |
| 4.If the different position in decoder see different block | |
| of the encoder, such as Mocha, the passed in mask could be | |
| in (#batch, L, T) shape. But there is no such case in current | |
| CosyVoice. | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| if cache.size(0) > 0: | |
| key_cache, value_cache = torch.split(cache, | |
| cache.size(-1) // 2, | |
| dim=-1) | |
| k = torch.cat([key_cache, k], dim=2) | |
| v = torch.cat([value_cache, v], dim=2) | |
| new_cache = torch.cat((k, v), dim=-1) | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
| """Multi-Head Attention layer with relative position encoding. | |
| Paper: https://arxiv.org/abs/1901.02860 | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| key_bias: bool = True, | |
| dtype=None, device=None, operations=None): | |
| """Construct an RelPositionMultiHeadedAttention object.""" | |
| super().__init__(n_head, n_feat, dropout_rate, key_bias, dtype=dtype, device=device, operations=operations) | |
| # linear transformation for positional encoding | |
| self.linear_pos = operations.Linear(n_feat, n_feat, bias=False, dtype=dtype, device=device) | |
| # these two learnable bias are used in matrix c and matrix d | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| self.pos_bias_u = nn.Parameter(torch.empty(self.h, self.d_k, dtype=dtype, device=device)) | |
| self.pos_bias_v = nn.Parameter(torch.empty(self.h, self.d_k, dtype=dtype, device=device)) | |
| # torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
| # torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
| def rel_shift(self, x: torch.Tensor) -> torch.Tensor: | |
| """Compute relative positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
| time1 means the length of query vector. | |
| Returns: | |
| torch.Tensor: Output tensor. | |
| """ | |
| zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
| device=x.device, | |
| dtype=x.dtype) | |
| x_padded = torch.cat([zero_pad, x], dim=-1) | |
| x_padded = x_padded.view(x.size()[0], | |
| x.size()[1], | |
| x.size(3) + 1, x.size(2)) | |
| x = x_padded[:, :, 1:].view_as(x)[ | |
| :, :, :, : x.size(-1) // 2 + 1 | |
| ] # only keep the positions from 0 to time2 | |
| return x | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2), (0, 0, 0) means fake mask. | |
| pos_emb (torch.Tensor): Positional embedding tensor | |
| (#batch, time2, size). | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
| if cache.size(0) > 0: | |
| key_cache, value_cache = torch.split(cache, | |
| cache.size(-1) // 2, | |
| dim=-1) | |
| k = torch.cat([key_cache, k], dim=2) | |
| v = torch.cat([value_cache, v], dim=2) | |
| # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
| # non-trivial to calculate `next_cache_start` here. | |
| new_cache = torch.cat((k, v), dim=-1) | |
| n_batch_pos = pos_emb.size(0) | |
| p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
| p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_u = (q + comfy.model_management.cast_to(self.pos_bias_u, dtype=q.dtype, device=q.device)).transpose(1, 2) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_v = (q + comfy.model_management.cast_to(self.pos_bias_v, dtype=q.dtype, device=q.device)).transpose(1, 2) | |
| # compute attention score | |
| # first compute matrix a and matrix c | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| # (batch, head, time1, time2) | |
| matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
| # compute matrix b and matrix d | |
| # (batch, head, time1, time2) | |
| matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
| # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used | |
| if matrix_ac.shape != matrix_bd.shape: | |
| matrix_bd = self.rel_shift(matrix_bd) | |
| scores = (matrix_ac + matrix_bd) / math.sqrt( | |
| self.d_k) # (batch, head, time1, time2) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| def subsequent_mask( | |
| size: int, | |
| device: torch.device = torch.device("cpu"), | |
| ) -> torch.Tensor: | |
| """Create mask for subsequent steps (size, size). | |
| This mask is used only in decoder which works in an auto-regressive mode. | |
| This means the current step could only do attention with its left steps. | |
| In encoder, fully attention is used when streaming is not necessary and | |
| the sequence is not long. In this case, no attention mask is needed. | |
| When streaming is need, chunk-based attention is used in encoder. See | |
| subsequent_chunk_mask for the chunk-based attention mask. | |
| Args: | |
| size (int): size of mask | |
| str device (str): "cpu" or "cuda" or torch.Tensor.device | |
| dtype (torch.device): result dtype | |
| Returns: | |
| torch.Tensor: mask | |
| Examples: | |
| >>> subsequent_mask(3) | |
| [[1, 0, 0], | |
| [1, 1, 0], | |
| [1, 1, 1]] | |
| """ | |
| arange = torch.arange(size, device=device) | |
| mask = arange.expand(size, size) | |
| arange = arange.unsqueeze(-1) | |
| mask = mask <= arange | |
| return mask | |
| def subsequent_chunk_mask( | |
| size: int, | |
| chunk_size: int, | |
| num_left_chunks: int = -1, | |
| device: torch.device = torch.device("cpu"), | |
| ) -> torch.Tensor: | |
| """Create mask for subsequent steps (size, size) with chunk size, | |
| this is for streaming encoder | |
| Args: | |
| size (int): size of mask | |
| chunk_size (int): size of chunk | |
| num_left_chunks (int): number of left chunks | |
| <0: use full chunk | |
| >=0: use num_left_chunks | |
| device (torch.device): "cpu" or "cuda" or torch.Tensor.device | |
| Returns: | |
| torch.Tensor: mask | |
| Examples: | |
| >>> subsequent_chunk_mask(4, 2) | |
| [[1, 1, 0, 0], | |
| [1, 1, 0, 0], | |
| [1, 1, 1, 1], | |
| [1, 1, 1, 1]] | |
| """ | |
| ret = torch.zeros(size, size, device=device, dtype=torch.bool) | |
| for i in range(size): | |
| if num_left_chunks < 0: | |
| start = 0 | |
| else: | |
| start = max((i // chunk_size - num_left_chunks) * chunk_size, 0) | |
| ending = min((i // chunk_size + 1) * chunk_size, size) | |
| ret[i, start:ending] = True | |
| return ret | |
| def add_optional_chunk_mask(xs: torch.Tensor, | |
| masks: torch.Tensor, | |
| use_dynamic_chunk: bool, | |
| use_dynamic_left_chunk: bool, | |
| decoding_chunk_size: int, | |
| static_chunk_size: int, | |
| num_decoding_left_chunks: int, | |
| enable_full_context: bool = True): | |
| """ Apply optional mask for encoder. | |
| Args: | |
| xs (torch.Tensor): padded input, (B, L, D), L for max length | |
| mask (torch.Tensor): mask for xs, (B, 1, L) | |
| use_dynamic_chunk (bool): whether to use dynamic chunk or not | |
| use_dynamic_left_chunk (bool): whether to use dynamic left chunk for | |
| training. | |
| decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| static_chunk_size (int): chunk size for static chunk training/decoding | |
| if it's greater than 0, if use_dynamic_chunk is true, | |
| this parameter will be ignored | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| enable_full_context (bool): | |
| True: chunk size is either [1, 25] or full context(max_len) | |
| False: chunk size ~ U[1, 25] | |
| Returns: | |
| torch.Tensor: chunk mask of the input xs. | |
| """ | |
| # Whether to use chunk mask or not | |
| if use_dynamic_chunk: | |
| max_len = xs.size(1) | |
| if decoding_chunk_size < 0: | |
| chunk_size = max_len | |
| num_left_chunks = -1 | |
| elif decoding_chunk_size > 0: | |
| chunk_size = decoding_chunk_size | |
| num_left_chunks = num_decoding_left_chunks | |
| else: | |
| # chunk size is either [1, 25] or full context(max_len). | |
| # Since we use 4 times subsampling and allow up to 1s(100 frames) | |
| # delay, the maximum frame is 100 / 4 = 25. | |
| chunk_size = torch.randint(1, max_len, (1, )).item() | |
| num_left_chunks = -1 | |
| if chunk_size > max_len // 2 and enable_full_context: | |
| chunk_size = max_len | |
| else: | |
| chunk_size = chunk_size % 25 + 1 | |
| if use_dynamic_left_chunk: | |
| max_left_chunks = (max_len - 1) // chunk_size | |
| num_left_chunks = torch.randint(0, max_left_chunks, | |
| (1, )).item() | |
| chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, | |
| num_left_chunks, | |
| xs.device) # (L, L) | |
| chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
| chunk_masks = masks & chunk_masks # (B, L, L) | |
| elif static_chunk_size > 0: | |
| num_left_chunks = num_decoding_left_chunks | |
| chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, | |
| num_left_chunks, | |
| xs.device) # (L, L) | |
| chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
| chunk_masks = masks & chunk_masks # (B, L, L) | |
| else: | |
| chunk_masks = masks | |
| return chunk_masks | |
| class ConformerEncoderLayer(nn.Module): | |
| """Encoder layer module. | |
| Args: | |
| size (int): Input dimension. | |
| self_attn (torch.nn.Module): Self-attention module instance. | |
| `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
| instance can be used as the argument. | |
| feed_forward (torch.nn.Module): Feed-forward module instance. | |
| `PositionwiseFeedForward` instance can be used as the argument. | |
| feed_forward_macaron (torch.nn.Module): Additional feed-forward module | |
| instance. | |
| `PositionwiseFeedForward` instance can be used as the argument. | |
| conv_module (torch.nn.Module): Convolution module instance. | |
| `ConvlutionModule` instance can be used as the argument. | |
| dropout_rate (float): Dropout rate. | |
| normalize_before (bool): | |
| True: use layer_norm before each sub-block. | |
| False: use layer_norm after each sub-block. | |
| """ | |
| def __init__( | |
| self, | |
| size: int, | |
| self_attn: torch.nn.Module, | |
| feed_forward: Optional[nn.Module] = None, | |
| feed_forward_macaron: Optional[nn.Module] = None, | |
| conv_module: Optional[nn.Module] = None, | |
| dropout_rate: float = 0.1, | |
| normalize_before: bool = True, | |
| dtype=None, device=None, operations=None | |
| ): | |
| """Construct an EncoderLayer object.""" | |
| super().__init__() | |
| self.self_attn = self_attn | |
| self.feed_forward = feed_forward | |
| self.feed_forward_macaron = feed_forward_macaron | |
| self.conv_module = conv_module | |
| self.norm_ff = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the FNN module | |
| self.norm_mha = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the MHA module | |
| if feed_forward_macaron is not None: | |
| self.norm_ff_macaron = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) | |
| self.ff_scale = 0.5 | |
| else: | |
| self.ff_scale = 1.0 | |
| if self.conv_module is not None: | |
| self.norm_conv = operations.LayerNorm(size, eps=1e-5, dtype=dtype, device=device) # for the CNN module | |
| self.norm_final = operations.LayerNorm( | |
| size, eps=1e-5, dtype=dtype, device=device) # for the final output of the block | |
| self.dropout = nn.Dropout(dropout_rate) | |
| self.size = size | |
| self.normalize_before = normalize_before | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
| cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Compute encoded features. | |
| Args: | |
| x (torch.Tensor): (#batch, time, size) | |
| mask (torch.Tensor): Mask tensor for the input (#batch, time,time), | |
| (0, 0, 0) means fake mask. | |
| pos_emb (torch.Tensor): positional encoding, must not be None | |
| for ConformerEncoderLayer. | |
| mask_pad (torch.Tensor): batch padding mask used for conv module. | |
| (#batch, 1,time), (0, 0, 0) means fake mask. | |
| att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
| (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
| cnn_cache (torch.Tensor): Convolution cache in conformer layer | |
| (#batch=1, size, cache_t2) | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, size). | |
| torch.Tensor: Mask tensor (#batch, time, time). | |
| torch.Tensor: att_cache tensor, | |
| (#batch=1, head, cache_t1 + time, d_k * 2). | |
| torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
| """ | |
| # whether to use macaron style | |
| if self.feed_forward_macaron is not None: | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_ff_macaron(x) | |
| x = residual + self.ff_scale * self.dropout( | |
| self.feed_forward_macaron(x)) | |
| if not self.normalize_before: | |
| x = self.norm_ff_macaron(x) | |
| # multi-headed self-attention module | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_mha(x) | |
| x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, | |
| att_cache) | |
| x = residual + self.dropout(x_att) | |
| if not self.normalize_before: | |
| x = self.norm_mha(x) | |
| # convolution module | |
| # Fake new cnn cache here, and then change it in conv_module | |
| new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
| if self.conv_module is not None: | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_conv(x) | |
| x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
| x = residual + self.dropout(x) | |
| if not self.normalize_before: | |
| x = self.norm_conv(x) | |
| # feed forward module | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_ff(x) | |
| x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) | |
| if not self.normalize_before: | |
| x = self.norm_ff(x) | |
| if self.conv_module is not None: | |
| x = self.norm_final(x) | |
| return x, mask, new_att_cache, new_cnn_cache | |
| class EspnetRelPositionalEncoding(torch.nn.Module): | |
| """Relative positional encoding module (new implementation). | |
| Details can be found in https://github.com/espnet/espnet/pull/2816. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
| """Construct an PositionalEncoding object.""" | |
| super(EspnetRelPositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.pe = None | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| def extend_pe(self, x: torch.Tensor): | |
| """Reset the positional encodings.""" | |
| if self.pe is not None: | |
| # self.pe contains both positive and negative parts | |
| # the length of self.pe is 2 * input_len - 1 | |
| if self.pe.size(1) >= x.size(1) * 2 - 1: | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
| return | |
| # Suppose `i` means to the position of query vecotr and `j` means the | |
| # position of key vector. We use position relative positions when keys | |
| # are to the left (i>j) and negative relative positions otherwise (i<j). | |
| pe_positive = torch.zeros(x.size(1), self.d_model) | |
| pe_negative = torch.zeros(x.size(1), self.d_model) | |
| position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe_positive[:, 0::2] = torch.sin(position * div_term) | |
| pe_positive[:, 1::2] = torch.cos(position * div_term) | |
| pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
| pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
| # Reserve the order of positive indices and concat both positive and | |
| # negative indices. This is used to support the shifting trick | |
| # as in https://arxiv.org/abs/1901.02860 | |
| pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
| pe_negative = pe_negative[1:].unsqueeze(0) | |
| pe = torch.cat([pe_positive, pe_negative], dim=1) | |
| self.pe = pe.to(device=x.device, dtype=x.dtype) | |
| def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ | |
| -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x * self.xscale | |
| pos_emb = self.position_encoding(size=x.size(1), offset=offset) | |
| return self.dropout(x), self.dropout(pos_emb) | |
| def position_encoding(self, | |
| offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| """ For getting encoding in a streaming fashion | |
| Attention!!!!! | |
| we apply dropout only once at the whole utterance level in a none | |
| streaming way, but will call this function several times with | |
| increasing input size in a streaming scenario, so the dropout will | |
| be applied several times. | |
| Args: | |
| offset (int or torch.tensor): start offset | |
| size (int): required size of position encoding | |
| Returns: | |
| torch.Tensor: Corresponding encoding | |
| """ | |
| pos_emb = self.pe[ | |
| :, | |
| self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size, | |
| ] | |
| return pos_emb | |
| class LinearEmbed(torch.nn.Module): | |
| """Linear transform the input without subsampling | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| def __init__(self, idim: int, odim: int, dropout_rate: float, | |
| pos_enc_class: torch.nn.Module, dtype=None, device=None, operations=None): | |
| """Construct an linear object.""" | |
| super().__init__() | |
| self.out = torch.nn.Sequential( | |
| operations.Linear(idim, odim, dtype=dtype, device=device), | |
| operations.LayerNorm(odim, eps=1e-5, dtype=dtype, device=device), | |
| torch.nn.Dropout(dropout_rate), | |
| ) | |
| self.pos_enc = pos_enc_class #rel_pos_espnet | |
| def position_encoding(self, offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| return self.pos_enc.position_encoding(offset, size) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| offset: Union[int, torch.Tensor] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Input x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: linear input tensor (#batch, time', odim), | |
| where time' = time . | |
| torch.Tensor: linear input mask (#batch, 1, time'), | |
| where time' = time . | |
| """ | |
| x = self.out(x) | |
| x, pos_emb = self.pos_enc(x, offset) | |
| return x, pos_emb | |
| ATTENTION_CLASSES = { | |
| "selfattn": MultiHeadedAttention, | |
| "rel_selfattn": RelPositionMultiHeadedAttention, | |
| } | |
| ACTIVATION_CLASSES = { | |
| "hardtanh": torch.nn.Hardtanh, | |
| "tanh": torch.nn.Tanh, | |
| "relu": torch.nn.ReLU, | |
| "selu": torch.nn.SELU, | |
| "swish": getattr(torch.nn, "SiLU", Swish), | |
| "gelu": torch.nn.GELU, | |
| } | |
| def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
| """Make mask tensor containing indices of padded part. | |
| See description of make_non_pad_mask. | |
| Args: | |
| lengths (torch.Tensor): Batch of lengths (B,). | |
| Returns: | |
| torch.Tensor: Mask tensor containing indices of padded part. | |
| Examples: | |
| >>> lengths = [5, 3, 2] | |
| >>> make_pad_mask(lengths) | |
| masks = [[0, 0, 0, 0 ,0], | |
| [0, 0, 0, 1, 1], | |
| [0, 0, 1, 1, 1]] | |
| """ | |
| batch_size = lengths.size(0) | |
| max_len = max_len if max_len > 0 else lengths.max().item() | |
| seq_range = torch.arange(0, | |
| max_len, | |
| dtype=torch.int64, | |
| device=lengths.device) | |
| seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) | |
| seq_length_expand = lengths.unsqueeze(-1) | |
| mask = seq_range_expand >= seq_length_expand | |
| return mask | |
| #https://github.com/FunAudioLLM/CosyVoice/blob/main/examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml | |
| class ConformerEncoder(torch.nn.Module): | |
| """Conformer encoder module.""" | |
| def __init__( | |
| self, | |
| input_size: int, | |
| output_size: int = 1024, | |
| attention_heads: int = 16, | |
| linear_units: int = 4096, | |
| num_blocks: int = 6, | |
| dropout_rate: float = 0.1, | |
| positional_dropout_rate: float = 0.1, | |
| attention_dropout_rate: float = 0.0, | |
| input_layer: str = 'linear', | |
| pos_enc_layer_type: str = 'rel_pos_espnet', | |
| normalize_before: bool = True, | |
| static_chunk_size: int = 1, # 1: causal_mask; 0: full_mask | |
| use_dynamic_chunk: bool = False, | |
| use_dynamic_left_chunk: bool = False, | |
| positionwise_conv_kernel_size: int = 1, | |
| macaron_style: bool =False, | |
| selfattention_layer_type: str = "rel_selfattn", | |
| activation_type: str = "swish", | |
| use_cnn_module: bool = False, | |
| cnn_module_kernel: int = 15, | |
| causal: bool = False, | |
| cnn_module_norm: str = "batch_norm", | |
| key_bias: bool = True, | |
| dtype=None, device=None, operations=None | |
| ): | |
| """Construct ConformerEncoder | |
| Args: | |
| input_size to use_dynamic_chunk, see in BaseEncoder | |
| positionwise_conv_kernel_size (int): Kernel size of positionwise | |
| conv1d layer. | |
| macaron_style (bool): Whether to use macaron style for | |
| positionwise layer. | |
| selfattention_layer_type (str): Encoder attention layer type, | |
| the parameter has no effect now, it's just for configure | |
| compatibility. #'rel_selfattn' | |
| activation_type (str): Encoder activation function type. | |
| use_cnn_module (bool): Whether to use convolution module. | |
| cnn_module_kernel (int): Kernel size of convolution module. | |
| causal (bool): whether to use causal convolution or not. | |
| key_bias: whether use bias in attention.linear_k, False for whisper models. | |
| """ | |
| super().__init__() | |
| self.output_size = output_size | |
| self.embed = LinearEmbed(input_size, output_size, dropout_rate, | |
| EspnetRelPositionalEncoding(output_size, positional_dropout_rate), dtype=dtype, device=device, operations=operations) | |
| self.normalize_before = normalize_before | |
| self.after_norm = operations.LayerNorm(output_size, eps=1e-5, dtype=dtype, device=device) | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.static_chunk_size = static_chunk_size | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
| activation = ACTIVATION_CLASSES[activation_type]() | |
| # self-attention module definition | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| attention_dropout_rate, | |
| key_bias, | |
| ) | |
| # feed-forward module definition | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| dropout_rate, | |
| activation, | |
| ) | |
| # convolution module definition | |
| convolution_layer_args = (output_size, cnn_module_kernel, activation, | |
| cnn_module_norm, causal) | |
| self.encoders = torch.nn.ModuleList([ | |
| ConformerEncoderLayer( | |
| output_size, | |
| RelPositionMultiHeadedAttention( | |
| *encoder_selfattn_layer_args, dtype=dtype, device=device, operations=operations), | |
| PositionwiseFeedForward(*positionwise_layer_args, dtype=dtype, device=device, operations=operations), | |
| PositionwiseFeedForward( | |
| *positionwise_layer_args, dtype=dtype, device=device, operations=operations) if macaron_style else None, | |
| ConvolutionModule( | |
| *convolution_layer_args, dtype=dtype, device=device, operations=operations) if use_cnn_module else None, | |
| dropout_rate, | |
| normalize_before, dtype=dtype, device=device, operations=operations | |
| ) for _ in range(num_blocks) | |
| ]) | |
| def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor) -> torch.Tensor: | |
| for layer in self.encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| pad_mask: torch.Tensor, | |
| decoding_chunk_size: int = 0, | |
| num_decoding_left_chunks: int = -1, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Embed positions in tensor. | |
| Args: | |
| xs: padded input tensor (B, T, D) | |
| xs_lens: input length (B) | |
| decoding_chunk_size: decoding chunk size for dynamic chunk | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| Returns: | |
| encoder output tensor xs, and subsampled masks | |
| xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
| masks: torch.Tensor batch padding mask after subsample | |
| (B, 1, T' ~= T/subsample_rate) | |
| NOTE(xcsong): | |
| We pass the `__call__` method of the modules instead of `forward` to the | |
| checkpointing API because `__call__` attaches all the hooks of the module. | |
| https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
| """ | |
| masks = None | |
| if pad_mask is not None: | |
| masks = pad_mask.to(torch.bool).unsqueeze(1) # (B, 1, T) | |
| xs, pos_emb = self.embed(xs) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask(xs, masks, | |
| self.use_dynamic_chunk, | |
| self.use_dynamic_left_chunk, | |
| decoding_chunk_size, | |
| self.static_chunk_size, | |
| num_decoding_left_chunks) | |
| xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| if self.normalize_before: | |
| xs = self.after_norm(xs) | |
| # Here we assume the mask is not changed in encoder layers, so just | |
| # return the masks before encoder layers, and the masks will be used | |
| # for cross attention with decoder later | |
| return xs, masks | |