DegMaTsu's picture
Upload app.py
19c9f55 verified
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
import spaces
import subprocess, sys
# ---------------------------------------------------------------------------------
# 🛠️ Monkey-patch для gradio_client: игнорируем булевы схемы и не падаем на TypeError
# ---------------------------------------------------------------------------------
import gradio_client.utils as _gc_utils
# Сохраняем оригинальные функции
_orig_js2pt = _gc_utils._json_schema_to_python_type
_orig_get_type = _gc_utils.get_type
def _safe_json_schema_to_python_type(schema, defs=None):
"""
Если schema — bool (True/False), возвращаем 'Any',
иначе — вызываем оригинальный код.
"""
if isinstance(schema, bool):
return "Any"
return _orig_js2pt(schema, defs)
def _safe_get_type(schema):
"""
Если schema — bool, возвращаем 'Any',
иначе — вызываем оригинальную функцию get_type.
"""
if isinstance(schema, bool):
return "Any"
return _orig_get_type(schema)
# Заменяем в модуле
_gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
_gc_utils.get_type = _safe_get_type
# ---------------------------------------------------------------------------------
# Дальше уже можно безопасно импортировать Gradio
import gradio
import gradio_client
import gradio as gr
print("gradio version:", gradio.__version__)
print("gradio_client version:", gradio_client.__version__)
hf_hub_download(repo_id="ezioruan/inswapper_128.onnx", filename="inswapper_128.onnx", local_dir="models/insightface")
hf_hub_download(repo_id="martintomov/comfy", filename="facerestore_models/GPEN-BFR-512.onnx", local_dir="models/facerestore_models")
# hf_hub_download(repo_id="Gourieff/ReActor", filename="models/facerestore_models/GPEN-BFR-512.onnx", local_dir="models/facerestore_models")
hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
import_custom_nodes()
from nodes import NODE_CLASS_MAPPINGS
@spaces.GPU(duration=20)
def generate_image(source_image, target_image, restore_strength, target_index):
with torch.inference_mode():
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loadimage_1 = loadimage.load_image(image=target_image)
loadimage_3 = loadimage.load_image(image=source_image)
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
reactorfaceswap_2 = reactorfaceswap.execute(
enabled=True,
swap_model="inswapper_128.onnx",
facedetection="retinaface_resnet50",
face_restore_model="GPEN-BFR-512.onnx",
face_restore_visibility=restore_strength,
codeformer_weight=0.5,
detect_gender_input="no",
detect_gender_source="no",
input_faces_index=str(target_index), # Преобразуем в строку
source_faces_index="0",
console_log_level=1,
input_image=get_value_at_index(loadimage_1, 0),
source_image=get_value_at_index(loadimage_3, 0),
)
saveimage_4 = saveimage.save_images(
filename_prefix="ComfyUI",
images=get_value_at_index(reactorfaceswap_2, 0),
)
saved_path = f"output/{saveimage_4['ui']['images'][0]['filename']}"
return saved_path
if __name__ == "__main__":
with gr.Blocks() as app:
# Add a title
gr.Markdown("# ComfyUI Reactor Fast Face Swap")
gr.Markdown("ComfyUI Reactor Fast Face Swap running directly on Gradio. - [How to convert your any ComfyUI workflow to Gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)")
with gr.Row():
with gr.Column():
# Add an input
# prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
# Add a `Row` to include the groups side by side
with gr.Row():
# First group includes structure image and depth strength
with gr.Group():
source_image = gr.Image(label="Source Image", type="filepath")
# depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
# Second group includes style image and style strength
with gr.Group():
target_image = gr.Image(label="Target Image", type="filepath")
restore_strength = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Face Restore Strength")
target_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index")
gr.Markdown("Index_0 = Largest Face. To switch for another target face - switch to Index_1, e.t.c")
# The generate button
generate_btn = gr.Button("Generate")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Image")
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs
# and the output an image
generate_btn.click(
fn=generate_image,
inputs=[source_image, target_image, restore_strength, target_index],
outputs=[output_image]
)
app.launch(share=True)