Spaces:
Sleeping
Sleeping
Upload models/network.py
Browse files- models/network.py +352 -0
models/network.py
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.nn import init
|
| 5 |
+
import torchvision
|
| 6 |
+
import torch.nn.utils.spectral_norm as spectral_norm
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ConvBlock(nn.Module):
|
| 11 |
+
def __init__(self, inChannels, outChannels, convNum, normLayer=None):
|
| 12 |
+
super(ConvBlock, self).__init__()
|
| 13 |
+
self.inConv = nn.Sequential(
|
| 14 |
+
nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1),
|
| 15 |
+
nn.ReLU(inplace=True)
|
| 16 |
+
)
|
| 17 |
+
layers = []
|
| 18 |
+
for _ in range(convNum - 1):
|
| 19 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
| 20 |
+
layers.append(nn.ReLU(inplace=True))
|
| 21 |
+
if not (normLayer is None):
|
| 22 |
+
layers.append(normLayer(outChannels))
|
| 23 |
+
self.conv = nn.Sequential(*layers)
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
x = self.inConv(x)
|
| 27 |
+
x = self.conv(x)
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ResidualBlock(nn.Module):
|
| 32 |
+
def __init__(self, channels, normLayer=None):
|
| 33 |
+
super(ResidualBlock, self).__init__()
|
| 34 |
+
layers = []
|
| 35 |
+
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1))
|
| 36 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
| 37 |
+
if not (normLayer is None):
|
| 38 |
+
layers.append(normLayer(channels))
|
| 39 |
+
layers.append(nn.ReLU(inplace=True))
|
| 40 |
+
layers.append(nn.Conv2d(channels, channels, kernel_size=3, padding=1))
|
| 41 |
+
if not (normLayer is None):
|
| 42 |
+
layers.append(normLayer(channels))
|
| 43 |
+
self.conv = nn.Sequential(*layers)
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
residual = self.conv(x)
|
| 47 |
+
return F.relu(x + residual, inplace=True)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class ResidualBlockSN(nn.Module):
|
| 51 |
+
def __init__(self, channels, normLayer=None):
|
| 52 |
+
super(ResidualBlockSN, self).__init__()
|
| 53 |
+
layers = []
|
| 54 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
| 55 |
+
layers.append(nn.LeakyReLU(0.2, True))
|
| 56 |
+
layers.append(spectral_norm(nn.Conv2d(channels, channels, kernel_size=3, padding=1)))
|
| 57 |
+
if not (normLayer is None):
|
| 58 |
+
layers.append(normLayer(channels))
|
| 59 |
+
self.conv = nn.Sequential(*layers)
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
residual = self.conv(x)
|
| 63 |
+
return F.leaky_relu(x + residual, 2e-1, inplace=True)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class DownsampleBlock(nn.Module):
|
| 67 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
| 68 |
+
super(DownsampleBlock, self).__init__()
|
| 69 |
+
layers = []
|
| 70 |
+
layers.append(nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=2))
|
| 71 |
+
layers.append(nn.ReLU(inplace=True))
|
| 72 |
+
for _ in range(convNum - 1):
|
| 73 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
| 74 |
+
layers.append(nn.ReLU(inplace=True))
|
| 75 |
+
if not (normLayer is None):
|
| 76 |
+
layers.append(normLayer(outChannels))
|
| 77 |
+
self.conv = nn.Sequential(*layers)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
return self.conv(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class UpsampleBlock(nn.Module):
|
| 84 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
| 85 |
+
super(UpsampleBlock, self).__init__()
|
| 86 |
+
self.conv1 = nn.Conv2d(inChannels, outChannels, kernel_size=3, padding=1, stride=1)
|
| 87 |
+
self.combine = nn.Conv2d(2 * outChannels, outChannels, kernel_size=3, padding=1)
|
| 88 |
+
layers = []
|
| 89 |
+
for _ in range(convNum - 1):
|
| 90 |
+
layers.append(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1))
|
| 91 |
+
layers.append(nn.ReLU(inplace=True))
|
| 92 |
+
if not (normLayer is None):
|
| 93 |
+
layers.append(normLayer(outChannels))
|
| 94 |
+
self.conv2 = nn.Sequential(*layers)
|
| 95 |
+
|
| 96 |
+
def forward(self, x, x0):
|
| 97 |
+
x = self.conv1(x)
|
| 98 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
| 99 |
+
x = self.combine(torch.cat((x, x0), 1))
|
| 100 |
+
x = F.relu(x)
|
| 101 |
+
return self.conv2(x)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class UpsampleBlockSN(nn.Module):
|
| 105 |
+
def __init__(self, inChannels, outChannels, convNum=2, normLayer=None):
|
| 106 |
+
super(UpsampleBlockSN, self).__init__()
|
| 107 |
+
self.conv1 = spectral_norm(nn.Conv2d(inChannels, outChannels, kernel_size=3, stride=1, padding=1))
|
| 108 |
+
self.shortcut = spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, stride=1, padding=1))
|
| 109 |
+
layers = []
|
| 110 |
+
for _ in range(convNum - 1):
|
| 111 |
+
layers.append(spectral_norm(nn.Conv2d(outChannels, outChannels, kernel_size=3, padding=1)))
|
| 112 |
+
layers.append(nn.LeakyReLU(0.2, True))
|
| 113 |
+
if not (normLayer is None):
|
| 114 |
+
layers.append(normLayer(outChannels))
|
| 115 |
+
self.conv2 = nn.Sequential(*layers)
|
| 116 |
+
|
| 117 |
+
def forward(self, x, x0):
|
| 118 |
+
x = self.conv1(x)
|
| 119 |
+
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
| 120 |
+
x = x + self.shortcut(x0)
|
| 121 |
+
x = F.leaky_relu(x, 2e-1)
|
| 122 |
+
return self.conv2(x)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class HourGlass2(nn.Module):
|
| 126 |
+
def __init__(self, inChannel=3, outChannel=1, resNum=3, normLayer=None):
|
| 127 |
+
super(HourGlass2, self).__init__()
|
| 128 |
+
self.inConv = ConvBlock(inChannel, 64, convNum=2, normLayer=normLayer)
|
| 129 |
+
self.down1 = DownsampleBlock(64, 128, convNum=2, normLayer=normLayer)
|
| 130 |
+
self.down2 = DownsampleBlock(128, 256, convNum=2, normLayer=normLayer)
|
| 131 |
+
self.residual = nn.Sequential(*[ResidualBlock(256) for _ in range(resNum)])
|
| 132 |
+
self.up2 = UpsampleBlock(256, 128, convNum=3, normLayer=normLayer)
|
| 133 |
+
self.up1 = UpsampleBlock(128, 64, convNum=3, normLayer=normLayer)
|
| 134 |
+
self.outConv = nn.Conv2d(64, outChannel, kernel_size=3, padding=1)
|
| 135 |
+
|
| 136 |
+
def forward(self, x):
|
| 137 |
+
f1 = self.inConv(x)
|
| 138 |
+
f2 = self.down1(f1)
|
| 139 |
+
f3 = self.down2(f2)
|
| 140 |
+
r3 = self.residual(f3)
|
| 141 |
+
r2 = self.up2(r3, f2)
|
| 142 |
+
r1 = self.up1(r2, f1)
|
| 143 |
+
y = self.outConv(r1)
|
| 144 |
+
return y
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class ColorProbNet(nn.Module):
|
| 148 |
+
def __init__(self, inChannel=1, outChannel=2, with_SA=False):
|
| 149 |
+
super(ColorProbNet, self).__init__()
|
| 150 |
+
BNFunc = nn.BatchNorm2d
|
| 151 |
+
# conv1: 256
|
| 152 |
+
conv1_2 = [spectral_norm(nn.Conv2d(inChannel, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 153 |
+
conv1_2 += [spectral_norm(nn.Conv2d(64, 64, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 154 |
+
conv1_2 += [BNFunc(64, affine=True)]
|
| 155 |
+
# conv2: 128
|
| 156 |
+
conv2_3 = [spectral_norm(nn.Conv2d(64, 128, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 157 |
+
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 158 |
+
conv2_3 += [spectral_norm(nn.Conv2d(128, 128, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 159 |
+
conv2_3 += [BNFunc(128, affine=True)]
|
| 160 |
+
# conv3: 64
|
| 161 |
+
conv3_3 = [spectral_norm(nn.Conv2d(128, 256, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 162 |
+
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 163 |
+
conv3_3 += [spectral_norm(nn.Conv2d(256, 256, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 164 |
+
conv3_3 += [BNFunc(256, affine=True)]
|
| 165 |
+
# conv4: 32
|
| 166 |
+
conv4_3 = [spectral_norm(nn.Conv2d(256, 512, 3, stride=2, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 167 |
+
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 168 |
+
conv4_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 169 |
+
conv4_3 += [BNFunc(512, affine=True)]
|
| 170 |
+
# conv5: 32
|
| 171 |
+
conv5_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 172 |
+
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 173 |
+
conv5_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 174 |
+
conv5_3 += [BNFunc(512, affine=True)]
|
| 175 |
+
# conv6: 32
|
| 176 |
+
conv6_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 177 |
+
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 178 |
+
conv6_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 179 |
+
conv6_3 += [BNFunc(512, affine=True),]
|
| 180 |
+
if with_SA:
|
| 181 |
+
conv6_3 += [Self_Attn(512)]
|
| 182 |
+
# conv7: 32
|
| 183 |
+
conv7_3 = [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 184 |
+
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 185 |
+
conv7_3 += [spectral_norm(nn.Conv2d(512, 512, 3, stride=1, padding=1)), nn.LeakyReLU(0.2, True),]
|
| 186 |
+
conv7_3 += [BNFunc(512, affine=True)]
|
| 187 |
+
# conv8: 64
|
| 188 |
+
conv8up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(512, 256, 3, stride=1, padding=1),]
|
| 189 |
+
conv3short8 = [nn.Conv2d(256, 256, 3, stride=1, padding=1),]
|
| 190 |
+
conv8_3 = [nn.ReLU(True),]
|
| 191 |
+
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),]
|
| 192 |
+
conv8_3 += [nn.Conv2d(256, 256, 3, stride=1, padding=1), nn.ReLU(True),]
|
| 193 |
+
conv8_3 += [BNFunc(256, affine=True),]
|
| 194 |
+
# conv9: 128
|
| 195 |
+
conv9up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(256, 128, 3, stride=1, padding=1),]
|
| 196 |
+
conv9_2 = [nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(True),]
|
| 197 |
+
conv9_2 += [BNFunc(128, affine=True)]
|
| 198 |
+
# conv10: 64
|
| 199 |
+
conv10up = [nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(128, 64, 3, stride=1, padding=1),]
|
| 200 |
+
conv10_2 = [nn.ReLU(True),]
|
| 201 |
+
conv10_2 += [nn.Conv2d(64, outChannel, 3, stride=1, padding=1), nn.ReLU(True),]
|
| 202 |
+
|
| 203 |
+
self.conv1_2 = nn.Sequential(*conv1_2)
|
| 204 |
+
self.conv2_3 = nn.Sequential(*conv2_3)
|
| 205 |
+
self.conv3_3 = nn.Sequential(*conv3_3)
|
| 206 |
+
self.conv4_3 = nn.Sequential(*conv4_3)
|
| 207 |
+
self.conv5_3 = nn.Sequential(*conv5_3)
|
| 208 |
+
self.conv6_3 = nn.Sequential(*conv6_3)
|
| 209 |
+
self.conv7_3 = nn.Sequential(*conv7_3)
|
| 210 |
+
self.conv8up = nn.Sequential(*conv8up)
|
| 211 |
+
self.conv3short8 = nn.Sequential(*conv3short8)
|
| 212 |
+
self.conv8_3 = nn.Sequential(*conv8_3)
|
| 213 |
+
self.conv9up = nn.Sequential(*conv9up)
|
| 214 |
+
self.conv9_2 = nn.Sequential(*conv9_2)
|
| 215 |
+
self.conv10up = nn.Sequential(*conv10up)
|
| 216 |
+
self.conv10_2 = nn.Sequential(*conv10_2)
|
| 217 |
+
# claffificaton output
|
| 218 |
+
#self.model_class = nn.Sequential(*[nn.Conv2d(256, 313, kernel_size=1, padding=0, stride=1),])
|
| 219 |
+
|
| 220 |
+
def forward(self, input_grays):
|
| 221 |
+
f1_2 = self.conv1_2(input_grays)
|
| 222 |
+
f2_3 = self.conv2_3(f1_2)
|
| 223 |
+
f3_3 = self.conv3_3(f2_3)
|
| 224 |
+
f4_3 = self.conv4_3(f3_3)
|
| 225 |
+
f5_3 = self.conv5_3(f4_3)
|
| 226 |
+
f6_3 = self.conv6_3(f5_3)
|
| 227 |
+
f7_3 = self.conv7_3(f6_3)
|
| 228 |
+
f8_up = self.conv8up(f7_3) + self.conv3short8(f3_3)
|
| 229 |
+
f8_3 = self.conv8_3(f8_up)
|
| 230 |
+
f9_up = self.conv9up(f8_3)
|
| 231 |
+
f9_2 = self.conv9_2(f9_up)
|
| 232 |
+
f10_up = self.conv10up(f9_2)
|
| 233 |
+
f10_2 = self.conv10_2(f10_up)
|
| 234 |
+
out_feats = f10_2
|
| 235 |
+
#out_probs = self.model_class(f8_3)
|
| 236 |
+
return out_feats
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def conv(batchNorm, in_planes, out_planes, kernel_size=3, stride=1):
|
| 241 |
+
if batchNorm:
|
| 242 |
+
return nn.Sequential(
|
| 243 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=False),
|
| 244 |
+
nn.BatchNorm2d(out_planes),
|
| 245 |
+
nn.LeakyReLU(0.1)
|
| 246 |
+
)
|
| 247 |
+
else:
|
| 248 |
+
return nn.Sequential(
|
| 249 |
+
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=(kernel_size-1)//2, bias=True),
|
| 250 |
+
nn.LeakyReLU(0.1)
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def deconv(in_planes, out_planes):
|
| 255 |
+
return nn.Sequential(
|
| 256 |
+
nn.ConvTranspose2d(in_planes, out_planes, kernel_size=4, stride=2, padding=1, bias=True),
|
| 257 |
+
nn.LeakyReLU(0.1)
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
class SpixelNet(nn.Module):
|
| 261 |
+
def __init__(self, inChannel=3, outChannel=9, batchNorm=True):
|
| 262 |
+
super(SpixelNet,self).__init__()
|
| 263 |
+
self.batchNorm = batchNorm
|
| 264 |
+
self.conv0a = conv(self.batchNorm, inChannel, 16, kernel_size=3)
|
| 265 |
+
self.conv0b = conv(self.batchNorm, 16, 16, kernel_size=3)
|
| 266 |
+
self.conv1a = conv(self.batchNorm, 16, 32, kernel_size=3, stride=2)
|
| 267 |
+
self.conv1b = conv(self.batchNorm, 32, 32, kernel_size=3)
|
| 268 |
+
self.conv2a = conv(self.batchNorm, 32, 64, kernel_size=3, stride=2)
|
| 269 |
+
self.conv2b = conv(self.batchNorm, 64, 64, kernel_size=3)
|
| 270 |
+
self.conv3a = conv(self.batchNorm, 64, 128, kernel_size=3, stride=2)
|
| 271 |
+
self.conv3b = conv(self.batchNorm, 128, 128, kernel_size=3)
|
| 272 |
+
self.conv4a = conv(self.batchNorm, 128, 256, kernel_size=3, stride=2)
|
| 273 |
+
self.conv4b = conv(self.batchNorm, 256, 256, kernel_size=3)
|
| 274 |
+
self.deconv3 = deconv(256, 128)
|
| 275 |
+
self.conv3_1 = conv(self.batchNorm, 256, 128)
|
| 276 |
+
self.deconv2 = deconv(128, 64)
|
| 277 |
+
self.conv2_1 = conv(self.batchNorm, 128, 64)
|
| 278 |
+
self.deconv1 = deconv(64, 32)
|
| 279 |
+
self.conv1_1 = conv(self.batchNorm, 64, 32)
|
| 280 |
+
self.deconv0 = deconv(32, 16)
|
| 281 |
+
self.conv0_1 = conv(self.batchNorm, 32, 16)
|
| 282 |
+
self.pred_mask0 = nn.Conv2d(16, outChannel, kernel_size=3, stride=1, padding=1, bias=True)
|
| 283 |
+
self.softmax = nn.Softmax(1)
|
| 284 |
+
for m in self.modules():
|
| 285 |
+
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
|
| 286 |
+
init.kaiming_normal_(m.weight, 0.1)
|
| 287 |
+
if m.bias is not None:
|
| 288 |
+
init.constant_(m.bias, 0)
|
| 289 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 290 |
+
init.constant_(m.weight, 1)
|
| 291 |
+
init.constant_(m.bias, 0)
|
| 292 |
+
|
| 293 |
+
def forward(self, x):
|
| 294 |
+
out1 = self.conv0b(self.conv0a(x)) #5*5
|
| 295 |
+
out2 = self.conv1b(self.conv1a(out1)) #11*11
|
| 296 |
+
out3 = self.conv2b(self.conv2a(out2)) #23*23
|
| 297 |
+
out4 = self.conv3b(self.conv3a(out3)) #47*47
|
| 298 |
+
out5 = self.conv4b(self.conv4a(out4)) #95*95
|
| 299 |
+
out_deconv3 = self.deconv3(out5)
|
| 300 |
+
concat3 = torch.cat((out4, out_deconv3), 1)
|
| 301 |
+
out_conv3_1 = self.conv3_1(concat3)
|
| 302 |
+
out_deconv2 = self.deconv2(out_conv3_1)
|
| 303 |
+
concat2 = torch.cat((out3, out_deconv2), 1)
|
| 304 |
+
out_conv2_1 = self.conv2_1(concat2)
|
| 305 |
+
out_deconv1 = self.deconv1(out_conv2_1)
|
| 306 |
+
concat1 = torch.cat((out2, out_deconv1), 1)
|
| 307 |
+
out_conv1_1 = self.conv1_1(concat1)
|
| 308 |
+
out_deconv0 = self.deconv0(out_conv1_1)
|
| 309 |
+
concat0 = torch.cat((out1, out_deconv0), 1)
|
| 310 |
+
out_conv0_1 = self.conv0_1(concat0)
|
| 311 |
+
mask0 = self.pred_mask0(out_conv0_1)
|
| 312 |
+
prob0 = self.softmax(mask0)
|
| 313 |
+
return prob0
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
## VGG architecter, used for the perceptual loss using a pretrained VGG network
|
| 318 |
+
class VGG19(torch.nn.Module):
|
| 319 |
+
def __init__(self, requires_grad=False, local_pretrained_path='checkpoints/vgg19.pth'):
|
| 320 |
+
super().__init__()
|
| 321 |
+
#vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
|
| 322 |
+
model = torchvision.models.vgg19()
|
| 323 |
+
model.load_state_dict(torch.load(local_pretrained_path))
|
| 324 |
+
vgg_pretrained_features = model.features
|
| 325 |
+
|
| 326 |
+
self.slice1 = torch.nn.Sequential()
|
| 327 |
+
self.slice2 = torch.nn.Sequential()
|
| 328 |
+
self.slice3 = torch.nn.Sequential()
|
| 329 |
+
self.slice4 = torch.nn.Sequential()
|
| 330 |
+
self.slice5 = torch.nn.Sequential()
|
| 331 |
+
for x in range(2):
|
| 332 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
| 333 |
+
for x in range(2, 7):
|
| 334 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
| 335 |
+
for x in range(7, 12):
|
| 336 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
| 337 |
+
for x in range(12, 21):
|
| 338 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
| 339 |
+
for x in range(21, 30):
|
| 340 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
| 341 |
+
if not requires_grad:
|
| 342 |
+
for param in self.parameters():
|
| 343 |
+
param.requires_grad = False
|
| 344 |
+
|
| 345 |
+
def forward(self, X):
|
| 346 |
+
h_relu1 = self.slice1(X)
|
| 347 |
+
h_relu2 = self.slice2(h_relu1)
|
| 348 |
+
h_relu3 = self.slice3(h_relu2)
|
| 349 |
+
h_relu4 = self.slice4(h_relu3)
|
| 350 |
+
h_relu5 = self.slice5(h_relu4)
|
| 351 |
+
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
|
| 352 |
+
return out
|