Spaces:
Running
Running
Upload predict.py
Browse files- predict.py +104 -0
predict.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Prediction interface for Cog ⚙️
|
| 2 |
+
# https://github.com/replicate/cog/blob/main/docs/python.md
|
| 3 |
+
|
| 4 |
+
from cog import BasePredictor, Input, Path
|
| 5 |
+
import tempfile
|
| 6 |
+
import os, glob
|
| 7 |
+
import numpy as np
|
| 8 |
+
import cv2
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from models import model, basic
|
| 14 |
+
from utils import util
|
| 15 |
+
|
| 16 |
+
class Predictor(BasePredictor):
|
| 17 |
+
def setup(self):
|
| 18 |
+
seed = 130
|
| 19 |
+
np.random.seed(seed)
|
| 20 |
+
torch.manual_seed(seed)
|
| 21 |
+
torch.cuda.manual_seed(seed)
|
| 22 |
+
#print('--------------', torch.cuda.is_available())
|
| 23 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
| 24 |
+
self.colorizer = model.AnchorColorProb(inChannel=1, outChannel=313, enhanced=True)
|
| 25 |
+
self.colorizer = self.colorizer.cuda()
|
| 26 |
+
checkpt_path = "./checkpoints/disco-beta.pth.rar"
|
| 27 |
+
assert os.path.exists(checkpt_path)
|
| 28 |
+
data_dict = torch.load(checkpt_path, map_location=torch.device('cpu'))
|
| 29 |
+
self.colorizer.load_state_dict(data_dict['state_dict'])
|
| 30 |
+
self.colorizer.eval()
|
| 31 |
+
self.color_class = basic.ColorLabel(lambda_=0.5, device='cuda')
|
| 32 |
+
|
| 33 |
+
def resize_ab2l(self, gray_img, lab_imgs):
|
| 34 |
+
H, W = gray_img.shape[:2]
|
| 35 |
+
reszied_ab = cv2.resize(lab_imgs[:,:,1:], (W,H), interpolation=cv2.INTER_LINEAR)
|
| 36 |
+
return np.concatenate((gray_img, reszied_ab), axis=2)
|
| 37 |
+
|
| 38 |
+
def predict(
|
| 39 |
+
self,
|
| 40 |
+
image: Path = Input(description="input image. Output will be one or multiple colorized images."),
|
| 41 |
+
n_anchors: int = Input(
|
| 42 |
+
description="number of color anchors", ge=3, le=14, default=8
|
| 43 |
+
),
|
| 44 |
+
multi_result: bool = Input(
|
| 45 |
+
description="to generate diverse results", default=False
|
| 46 |
+
),
|
| 47 |
+
vis_anchors: bool = Input(
|
| 48 |
+
description="to visualize the anchor locations", default=False
|
| 49 |
+
)
|
| 50 |
+
) -> Path:
|
| 51 |
+
"""Run a single prediction on the model"""
|
| 52 |
+
bgr_img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
| 53 |
+
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
|
| 54 |
+
rgb_img = np.array(rgb_img / 255., np.float32)
|
| 55 |
+
lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
|
| 56 |
+
org_grays = (lab_img[:,:,[0]]-50.) / 50.
|
| 57 |
+
lab_img = cv2.resize(lab_img, (256,256), interpolation=cv2.INTER_LINEAR)
|
| 58 |
+
|
| 59 |
+
lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
|
| 60 |
+
gray_img = (lab_img[0:1,:,:]-50.) / 50.
|
| 61 |
+
ab_chans = lab_img[1:3,:,:] / 110.
|
| 62 |
+
input_grays = gray_img.unsqueeze(0)
|
| 63 |
+
input_colors = ab_chans.unsqueeze(0)
|
| 64 |
+
input_grays = input_grays.cuda(non_blocking=True)
|
| 65 |
+
input_colors = input_colors.cuda(non_blocking=True)
|
| 66 |
+
|
| 67 |
+
sampled_T = 2 if multi_result else 0
|
| 68 |
+
pal_logit, ref_logit, enhanced_ab, affinity_map, spix_colors, hint_mask = self.colorizer(input_grays, \
|
| 69 |
+
input_colors, n_anchors, True, sampled_T)
|
| 70 |
+
pred_probs = pal_logit
|
| 71 |
+
guided_colors = self.color_class.decode_ind2ab(ref_logit, T=0)
|
| 72 |
+
sp_size = 16
|
| 73 |
+
guided_colors = basic.upfeat(guided_colors, affinity_map, sp_size, sp_size)
|
| 74 |
+
res_list = []
|
| 75 |
+
if multi_result:
|
| 76 |
+
for no in range(3):
|
| 77 |
+
pred_labs = torch.cat((input_grays,enhanced_ab[no:no+1,:,:,:]), dim=1)
|
| 78 |
+
lab_imgs = basic.tensor2array(pred_labs).squeeze(axis=0)
|
| 79 |
+
lab_imgs = self.resize_ab2l(org_grays, lab_imgs)
|
| 80 |
+
#util.save_normLabs_from_batch(lab_imgs, save_dir, [file_name], -1, suffix='c%d'%no)
|
| 81 |
+
res_list.append(lab_imgs)
|
| 82 |
+
else:
|
| 83 |
+
pred_labs = torch.cat((input_grays,enhanced_ab), dim=1)
|
| 84 |
+
lab_imgs = basic.tensor2array(pred_labs).squeeze(axis=0)
|
| 85 |
+
lab_imgs = self.resize_ab2l(org_grays, lab_imgs)
|
| 86 |
+
#util.save_normLabs_from_batch(lab_imgs, save_dir, [file_name], -1)#, suffix='enhanced')
|
| 87 |
+
res_list.append(lab_imgs)
|
| 88 |
+
|
| 89 |
+
if vis_anchors:
|
| 90 |
+
## visualize anchor locations
|
| 91 |
+
anchor_masks = basic.upfeat(hint_mask, affinity_map, sp_size, sp_size)
|
| 92 |
+
marked_labs = basic.mark_color_hints(input_grays, enhanced_ab, anchor_masks, base_ABs=enhanced_ab)
|
| 93 |
+
hint_imgs = basic.tensor2array(marked_labs).squeeze(axis=0)
|
| 94 |
+
hint_imgs = self.resize_ab2l(org_grays, hint_imgs)
|
| 95 |
+
#util.save_normLabs_from_batch(hint_imgs, save_dir, [file_name], -1, suffix='anchors')
|
| 96 |
+
res_list.append(hint_imgs)
|
| 97 |
+
|
| 98 |
+
output = cv2.vconcat(res_list)
|
| 99 |
+
output[:,:,0] = output[:,:,0] * 50.0 + 50.0
|
| 100 |
+
output[:,:,1:3] = output[:,:,1:3] * 110.0
|
| 101 |
+
rgb_output = cv2.cvtColor(output[:,:,:], cv2.COLOR_LAB2BGR)
|
| 102 |
+
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
| 103 |
+
cv2.imwrite(str(out_path), (rgb_output*255.0).astype(np.uint8))
|
| 104 |
+
return out_path
|