Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import tempfile | |
| import unittest | |
| from typing import Dict, List, Tuple | |
| from diffusers import FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxPNDMScheduler | |
| from diffusers.utils import is_flax_available | |
| from diffusers.utils.testing_utils import require_flax | |
| if is_flax_available(): | |
| import jax | |
| import jax.numpy as jnp | |
| from jax import random | |
| jax_device = jax.default_backend() | |
| class FlaxSchedulerCommonTest(unittest.TestCase): | |
| scheduler_classes = () | |
| forward_default_kwargs = () | |
| def dummy_sample(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| key1, key2 = random.split(random.PRNGKey(0)) | |
| sample = random.uniform(key1, (batch_size, num_channels, height, width)) | |
| return sample, key2 | |
| def dummy_sample_deter(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| num_elems = batch_size * num_channels * height * width | |
| sample = jnp.arange(num_elems) | |
| sample = sample.reshape(num_channels, height, width, batch_size) | |
| sample = sample / num_elems | |
| return jnp.transpose(sample, (3, 0, 1, 2)) | |
| def get_scheduler_config(self): | |
| raise NotImplementedError | |
| def dummy_model(self): | |
| def model(sample, t, *args): | |
| return sample * t / (t + 1) | |
| return model | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, key = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| kwargs.update(forward_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, key = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, key = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, 1, sample, key, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, key = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output_0 = scheduler.step(state, residual, 0, sample, key, **kwargs).prev_sample | |
| output_1 = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| return t.at[t != t].set(0) | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, key = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_dict = scheduler.step(state, residual, 0, sample, key, **kwargs) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_tuple = scheduler.step(state, residual, 0, sample, key, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple[0], outputs_dict.prev_sample) | |
| def test_deprecated_kwargs(self): | |
| for scheduler_class in self.scheduler_classes: | |
| has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters | |
| has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 | |
| if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" | |
| " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
| " [<deprecated_argument>]`" | |
| ) | |
| if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" | |
| f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" | |
| " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" | |
| ) | |
| class FlaxDDPMSchedulerTest(FlaxSchedulerCommonTest): | |
| scheduler_classes = (FlaxDDPMScheduler,) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "variance_type": "fixed_small", | |
| "clip_sample": True, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [1, 5, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_variance_type(self): | |
| for variance in ["fixed_small", "fixed_large", "other"]: | |
| self.check_over_configs(variance_type=variance) | |
| def test_clip_sample(self): | |
| for clip_sample in [True, False]: | |
| self.check_over_configs(clip_sample=clip_sample) | |
| def test_time_indices(self): | |
| for t in [0, 500, 999]: | |
| self.check_over_forward(time_step=t) | |
| def test_variance(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0) - 0.0)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487) - 0.00979)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999) - 0.02)) < 1e-5 | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| num_trained_timesteps = len(scheduler) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| key1, key2 = random.split(random.PRNGKey(0)) | |
| for t in reversed(range(num_trained_timesteps)): | |
| # 1. predict noise residual | |
| residual = model(sample, t) | |
| # 2. predict previous mean of sample x_t-1 | |
| output = scheduler.step(state, residual, t, sample, key1) | |
| pred_prev_sample = output.prev_sample | |
| state = output.state | |
| key1, key2 = random.split(key2) | |
| # if t > 0: | |
| # noise = self.dummy_sample_deter | |
| # variance = scheduler.get_variance(t) ** (0.5) * noise | |
| # | |
| # sample = pred_prev_sample + variance | |
| sample = pred_prev_sample | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| assert abs(result_sum - 255.0714) < 1e-2 | |
| assert abs(result_mean - 0.332124) < 1e-3 | |
| else: | |
| assert abs(result_sum - 255.1113) < 1e-2 | |
| assert abs(result_mean - 0.332176) < 1e-3 | |
| class FlaxDDIMSchedulerTest(FlaxSchedulerCommonTest): | |
| scheduler_classes = (FlaxDDIMScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 50),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| key1, key2 = random.split(random.PRNGKey(0)) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| for t in state.timesteps: | |
| residual = model(sample, t) | |
| output = scheduler.step(state, residual, t, sample) | |
| sample = output.prev_sample | |
| state = output.state | |
| key1, key2 = random.split(key2) | |
| return sample | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, 1, sample, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| kwargs.update(forward_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| return t.at[t != t].set(0) | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple[0], outputs_dict.prev_sample) | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output_0 = scheduler.step(state, residual, 0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [100, 500, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_steps_offset(self): | |
| for steps_offset in [0, 1]: | |
| self.check_over_configs(steps_offset=steps_offset) | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(steps_offset=1) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| state = scheduler.set_timesteps(state, 5) | |
| assert jnp.equal(state.timesteps, jnp.array([801, 601, 401, 201, 1])).all() | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_time_indices(self): | |
| for t in [1, 10, 49]: | |
| self.check_over_forward(time_step=t) | |
| def test_inference_steps(self): | |
| for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): | |
| self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) | |
| def test_variance(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 420, 400) - 0.14771)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 980, 960) - 0.32460)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487, 486) - 0.00979)) < 1e-5 | |
| assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999, 998) - 0.02)) < 1e-5 | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| assert abs(result_sum - 172.0067) < 1e-2 | |
| assert abs(result_mean - 0.223967) < 1e-3 | |
| def test_full_loop_with_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| assert abs(result_sum - 149.8409) < 1e-2 | |
| assert abs(result_mean - 0.1951) < 1e-3 | |
| else: | |
| assert abs(result_sum - 149.8295) < 1e-2 | |
| assert abs(result_mean - 0.1951) < 1e-3 | |
| def test_full_loop_with_no_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| pass | |
| # FIXME: both result_sum and result_mean are nan on TPU | |
| # assert jnp.isnan(result_sum) | |
| # assert jnp.isnan(result_mean) | |
| else: | |
| assert abs(result_sum - 149.0784) < 1e-2 | |
| assert abs(result_mean - 0.1941) < 1e-3 | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "sample", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| class FlaxPNDMSchedulerTest(FlaxSchedulerCommonTest): | |
| scheduler_classes = (FlaxPNDMScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 50),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| # copy over dummy past residuals | |
| state = state.replace(ets=dummy_past_residuals[:]) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) | |
| # copy over dummy past residuals | |
| new_state = new_state.replace(ets=dummy_past_residuals[:]) | |
| (prev_sample, state) = scheduler.step_prk(state, residual, time_step, sample, **kwargs) | |
| (new_prev_sample, new_state) = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) | |
| assert jnp.sum(jnp.abs(prev_sample - new_prev_sample)) < 1e-5, "Scheduler outputs are not identical" | |
| output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) | |
| new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| return t.at[t != t].set(0) | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple[0], outputs_dict.prev_sample) | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.ets = dummy_past_residuals[:] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_state.replace(ets=dummy_past_residuals[:]) | |
| output, state = scheduler.step_prk(state, residual, time_step, sample, **kwargs) | |
| new_output, new_state = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) | |
| new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) | |
| assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| for i, t in enumerate(state.prk_timesteps): | |
| residual = model(sample, t) | |
| sample, state = scheduler.step_prk(state, residual, t, sample) | |
| for i, t in enumerate(state.plms_timesteps): | |
| residual = model(sample, t) | |
| sample, state = scheduler.step_plms(state, residual, t, sample) | |
| return sample | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) | |
| state = state.replace(ets=dummy_past_residuals[:]) | |
| output_0, state = scheduler.step_prk(state, residual, 0, sample, **kwargs) | |
| output_1, state = scheduler.step_prk(state, residual, 1, sample, **kwargs) | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| output_0, state = scheduler.step_plms(state, residual, 0, sample, **kwargs) | |
| output_1, state = scheduler.step_plms(state, residual, 1, sample, **kwargs) | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_steps_offset(self): | |
| for steps_offset in [0, 1]: | |
| self.check_over_configs(steps_offset=steps_offset) | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(steps_offset=1) | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| state = scheduler.set_timesteps(state, 10, shape=()) | |
| assert jnp.equal( | |
| state.timesteps, | |
| jnp.array([901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]), | |
| ).all() | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_time_indices(self): | |
| for t in [1, 5, 10]: | |
| self.check_over_forward(time_step=t) | |
| def test_inference_steps(self): | |
| for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): | |
| self.check_over_forward(num_inference_steps=num_inference_steps) | |
| def test_pow_of_3_inference_steps(self): | |
| # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 | |
| num_inference_steps = 27 | |
| for scheduler_class in self.scheduler_classes: | |
| sample, _ = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) | |
| # before power of 3 fix, would error on first step, so we only need to do two | |
| for i, t in enumerate(state.prk_timesteps[:2]): | |
| sample, state = scheduler.step_prk(state, residual, t, sample) | |
| def test_inference_plms_no_past_residuals(self): | |
| with self.assertRaises(ValueError): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| state = scheduler.create_state() | |
| scheduler.step_plms(state, self.dummy_sample, 1, self.dummy_sample).prev_sample | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| assert abs(result_sum - 198.1275) < 1e-2 | |
| assert abs(result_mean - 0.2580) < 1e-3 | |
| else: | |
| assert abs(result_sum - 198.1318) < 1e-2 | |
| assert abs(result_mean - 0.2580) < 1e-3 | |
| def test_full_loop_with_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| assert abs(result_sum - 186.83226) < 1e-2 | |
| assert abs(result_mean - 0.24327) < 1e-3 | |
| else: | |
| assert abs(result_sum - 186.9466) < 1e-2 | |
| assert abs(result_mean - 0.24342) < 1e-3 | |
| def test_full_loop_with_no_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | |
| result_sum = jnp.sum(jnp.abs(sample)) | |
| result_mean = jnp.mean(jnp.abs(sample)) | |
| if jax_device == "tpu": | |
| assert abs(result_sum - 186.83226) < 1e-2 | |
| assert abs(result_mean - 0.24327) < 1e-3 | |
| else: | |
| assert abs(result_sum - 186.9482) < 1e-2 | |
| assert abs(result_mean - 0.2434) < 1e-3 | |