Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel | |
| from diffusers.utils import PIL_INTERPOLATION, floats_tensor, load_image, slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class LDMSuperResolutionPipelineFastTests(unittest.TestCase): | |
| def dummy_image(self): | |
| batch_size = 1 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | |
| return image | |
| def dummy_uncond_unet(self): | |
| torch.manual_seed(0) | |
| model = UNet2DModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=6, | |
| out_channels=3, | |
| down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
| up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
| ) | |
| return model | |
| def dummy_vq_model(self): | |
| torch.manual_seed(0) | |
| model = VQModel( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=3, | |
| ) | |
| return model | |
| def test_inference_superresolution(self): | |
| device = "cpu" | |
| unet = self.dummy_uncond_unet | |
| scheduler = DDIMScheduler() | |
| vqvae = self.dummy_vq_model | |
| ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) | |
| ldm.to(device) | |
| ldm.set_progress_bar_config(disable=None) | |
| init_image = self.dummy_image.to(device) | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="numpy").images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_inference_superresolution_fp16(self): | |
| unet = self.dummy_uncond_unet | |
| scheduler = DDIMScheduler() | |
| vqvae = self.dummy_vq_model | |
| # put models in fp16 | |
| unet = unet.half() | |
| vqvae = vqvae.half() | |
| ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) | |
| ldm.to(torch_device) | |
| ldm.set_progress_bar_config(disable=None) | |
| init_image = self.dummy_image.to(torch_device) | |
| image = ldm(init_image, num_inference_steps=2, output_type="numpy").images | |
| assert image.shape == (1, 64, 64, 3) | |
| class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): | |
| def test_inference_superresolution(self): | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/vq_diffusion/teddy_bear_pool.png" | |
| ) | |
| init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) | |
| ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto") | |
| ldm.set_progress_bar_config(disable=None) | |
| generator = torch.manual_seed(0) | |
| image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 256, 256, 3) | |
| expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |