Spaces:
Runtime error
Runtime error
| import math | |
| from dataclasses import dataclass | |
| from numbers import Number | |
| from typing import NamedTuple, Tuple, Union | |
| import numpy as np | |
| import torch as th | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from choices import * | |
| from config_base import BaseConfig | |
| from .blocks import * | |
| from .nn import (conv_nd, linear, normalization, timestep_embedding, | |
| torch_checkpoint, zero_module) | |
| class BeatGANsUNetConfig(BaseConfig): | |
| image_size: int = 64 | |
| in_channels: int = 3 | |
| # base channels, will be multiplied | |
| model_channels: int = 64 | |
| # output of the unet | |
| # suggest: 3 | |
| # you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3) | |
| out_channels: int = 3 | |
| # how many repeating resblocks per resolution | |
| # the decoding side would have "one more" resblock | |
| # default: 2 | |
| num_res_blocks: int = 2 | |
| # you can also set the number of resblocks specifically for the input blocks | |
| # default: None = above | |
| num_input_res_blocks: int = None | |
| # number of time embed channels and style channels | |
| embed_channels: int = 512 | |
| # at what resolutions you want to do self-attention of the feature maps | |
| # attentions generally improve performance | |
| # default: [16] | |
| # beatgans: [32, 16, 8] | |
| attention_resolutions: Tuple[int] = (16, ) | |
| # number of time embed channels | |
| time_embed_channels: int = None | |
| # dropout applies to the resblocks (on feature maps) | |
| dropout: float = 0.1 | |
| channel_mult: Tuple[int] = (1, 2, 4, 8) | |
| input_channel_mult: Tuple[int] = None | |
| conv_resample: bool = True | |
| # always 2 = 2d conv | |
| dims: int = 2 | |
| # don't use this, legacy from BeatGANs | |
| num_classes: int = None | |
| use_checkpoint: bool = False | |
| # number of attention heads | |
| num_heads: int = 1 | |
| # or specify the number of channels per attention head | |
| num_head_channels: int = -1 | |
| # what's this? | |
| num_heads_upsample: int = -1 | |
| # use resblock for upscale/downscale blocks (expensive) | |
| # default: True (BeatGANs) | |
| resblock_updown: bool = True | |
| # never tried | |
| use_new_attention_order: bool = False | |
| resnet_two_cond: bool = False | |
| resnet_cond_channels: int = None | |
| # init the decoding conv layers with zero weights, this speeds up training | |
| # default: True (BeattGANs) | |
| resnet_use_zero_module: bool = True | |
| # gradient checkpoint the attention operation | |
| attn_checkpoint: bool = False | |
| def make_model(self): | |
| return BeatGANsUNetModel(self) | |
| class BeatGANsUNetModel(nn.Module): | |
| def __init__(self, conf: BeatGANsUNetConfig): | |
| super().__init__() | |
| self.conf = conf | |
| if conf.num_heads_upsample == -1: | |
| self.num_heads_upsample = conf.num_heads | |
| self.dtype = th.float32 | |
| self.time_emb_channels = conf.time_embed_channels or conf.model_channels | |
| self.time_embed = nn.Sequential( | |
| linear(self.time_emb_channels, conf.embed_channels), | |
| nn.SiLU(), | |
| linear(conf.embed_channels, conf.embed_channels), | |
| ) | |
| if conf.num_classes is not None: | |
| self.label_emb = nn.Embedding(conf.num_classes, | |
| conf.embed_channels) | |
| ch = input_ch = int(conf.channel_mult[0] * conf.model_channels) | |
| self.input_blocks = nn.ModuleList([ | |
| TimestepEmbedSequential( | |
| conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) | |
| ]) | |
| kwargs = dict( | |
| use_condition=True, | |
| two_cond=conf.resnet_two_cond, | |
| use_zero_module=conf.resnet_use_zero_module, | |
| # style channels for the resnet block | |
| cond_emb_channels=conf.resnet_cond_channels, | |
| ) | |
| self._feature_size = ch | |
| # input_block_chans = [ch] | |
| input_block_chans = [[] for _ in range(len(conf.channel_mult))] | |
| input_block_chans[0].append(ch) | |
| # number of blocks at each resolution | |
| self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))] | |
| self.input_num_blocks[0] = 1 | |
| self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))] | |
| ds = 1 | |
| resolution = conf.image_size | |
| for level, mult in enumerate(conf.input_channel_mult | |
| or conf.channel_mult): | |
| for _ in range(conf.num_input_res_blocks or conf.num_res_blocks): | |
| layers = [ | |
| ResBlockConfig( | |
| ch, | |
| conf.embed_channels, | |
| conf.dropout, | |
| out_channels=int(mult * conf.model_channels), | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| **kwargs, | |
| ).make_model() | |
| ] | |
| ch = int(mult * conf.model_channels) | |
| if resolution in conf.attention_resolutions: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=conf.use_checkpoint | |
| or conf.attn_checkpoint, | |
| num_heads=conf.num_heads, | |
| num_head_channels=conf.num_head_channels, | |
| use_new_attention_order=conf. | |
| use_new_attention_order, | |
| )) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| # input_block_chans.append(ch) | |
| input_block_chans[level].append(ch) | |
| self.input_num_blocks[level] += 1 | |
| # print(input_block_chans) | |
| if level != len(conf.channel_mult) - 1: | |
| resolution //= 2 | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlockConfig( | |
| ch, | |
| conf.embed_channels, | |
| conf.dropout, | |
| out_channels=out_ch, | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| down=True, | |
| **kwargs, | |
| ).make_model() if conf. | |
| resblock_updown else Downsample(ch, | |
| conf.conv_resample, | |
| dims=conf.dims, | |
| out_channels=out_ch))) | |
| ch = out_ch | |
| # input_block_chans.append(ch) | |
| input_block_chans[level + 1].append(ch) | |
| self.input_num_blocks[level + 1] += 1 | |
| ds *= 2 | |
| self._feature_size += ch | |
| self.middle_block = TimestepEmbedSequential( | |
| ResBlockConfig( | |
| ch, | |
| conf.embed_channels, | |
| conf.dropout, | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| **kwargs, | |
| ).make_model(), | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint, | |
| num_heads=conf.num_heads, | |
| num_head_channels=conf.num_head_channels, | |
| use_new_attention_order=conf.use_new_attention_order, | |
| ), | |
| ResBlockConfig( | |
| ch, | |
| conf.embed_channels, | |
| conf.dropout, | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| **kwargs, | |
| ).make_model(), | |
| ) | |
| self._feature_size += ch | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(conf.channel_mult))[::-1]: | |
| for i in range(conf.num_res_blocks + 1): | |
| # print(input_block_chans) | |
| # ich = input_block_chans.pop() | |
| try: | |
| ich = input_block_chans[level].pop() | |
| except IndexError: | |
| # this happens only when num_res_block > num_enc_res_block | |
| # we will not have enough lateral (skip) connecions for all decoder blocks | |
| ich = 0 | |
| # print('pop:', ich) | |
| layers = [ | |
| ResBlockConfig( | |
| # only direct channels when gated | |
| channels=ch + ich, | |
| emb_channels=conf.embed_channels, | |
| dropout=conf.dropout, | |
| out_channels=int(conf.model_channels * mult), | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| # lateral channels are described here when gated | |
| has_lateral=True if ich > 0 else False, | |
| lateral_channels=None, | |
| **kwargs, | |
| ).make_model() | |
| ] | |
| ch = int(conf.model_channels * mult) | |
| if resolution in conf.attention_resolutions: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=conf.use_checkpoint | |
| or conf.attn_checkpoint, | |
| num_heads=self.num_heads_upsample, | |
| num_head_channels=conf.num_head_channels, | |
| use_new_attention_order=conf. | |
| use_new_attention_order, | |
| )) | |
| if level and i == conf.num_res_blocks: | |
| resolution *= 2 | |
| out_ch = ch | |
| layers.append( | |
| ResBlockConfig( | |
| ch, | |
| conf.embed_channels, | |
| conf.dropout, | |
| out_channels=out_ch, | |
| dims=conf.dims, | |
| use_checkpoint=conf.use_checkpoint, | |
| up=True, | |
| **kwargs, | |
| ).make_model() if ( | |
| conf.resblock_updown | |
| ) else Upsample(ch, | |
| conf.conv_resample, | |
| dims=conf.dims, | |
| out_channels=out_ch)) | |
| ds //= 2 | |
| self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
| self.output_num_blocks[level] += 1 | |
| self._feature_size += ch | |
| # print(input_block_chans) | |
| # print('inputs:', self.input_num_blocks) | |
| # print('outputs:', self.output_num_blocks) | |
| if conf.resnet_use_zero_module: | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| zero_module( | |
| conv_nd(conf.dims, | |
| input_ch, | |
| conf.out_channels, | |
| 3, | |
| padding=1)), | |
| ) | |
| else: | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1), | |
| ) | |
| def forward(self, x, t, y=None, **kwargs): | |
| """ | |
| Apply the model to an input batch. | |
| :param x: an [N x C x ...] Tensor of inputs. | |
| :param timesteps: a 1-D batch of timesteps. | |
| :param y: an [N] Tensor of labels, if class-conditional. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| assert (y is not None) == ( | |
| self.conf.num_classes is not None | |
| ), "must specify y if and only if the model is class-conditional" | |
| # hs = [] | |
| hs = [[] for _ in range(len(self.conf.channel_mult))] | |
| emb = self.time_embed(timestep_embedding(t, self.time_emb_channels)) | |
| if self.conf.num_classes is not None: | |
| raise NotImplementedError() | |
| # assert y.shape == (x.shape[0], ) | |
| # emb = emb + self.label_emb(y) | |
| # new code supports input_num_blocks != output_num_blocks | |
| h = x.type(self.dtype) | |
| k = 0 | |
| for i in range(len(self.input_num_blocks)): | |
| for j in range(self.input_num_blocks[i]): | |
| h = self.input_blocks[k](h, emb=emb) | |
| # print(i, j, h.shape) | |
| hs[i].append(h) | |
| k += 1 | |
| assert k == len(self.input_blocks) | |
| h = self.middle_block(h, emb=emb) | |
| k = 0 | |
| for i in range(len(self.output_num_blocks)): | |
| for j in range(self.output_num_blocks[i]): | |
| # take the lateral connection from the same layer (in reserve) | |
| # until there is no more, use None | |
| try: | |
| lateral = hs[-i - 1].pop() | |
| # print(i, j, lateral.shape) | |
| except IndexError: | |
| lateral = None | |
| # print(i, j, lateral) | |
| h = self.output_blocks[k](h, emb=emb, lateral=lateral) | |
| k += 1 | |
| h = h.type(x.dtype) | |
| pred = self.out(h) | |
| return Return(pred=pred) | |
| class Return(NamedTuple): | |
| pred: th.Tensor | |
| class BeatGANsEncoderConfig(BaseConfig): | |
| image_size: int | |
| in_channels: int | |
| model_channels: int | |
| out_hid_channels: int | |
| out_channels: int | |
| num_res_blocks: int | |
| attention_resolutions: Tuple[int] | |
| dropout: float = 0 | |
| channel_mult: Tuple[int] = (1, 2, 4, 8) | |
| use_time_condition: bool = True | |
| conv_resample: bool = True | |
| dims: int = 2 | |
| use_checkpoint: bool = False | |
| num_heads: int = 1 | |
| num_head_channels: int = -1 | |
| resblock_updown: bool = False | |
| use_new_attention_order: bool = False | |
| pool: str = 'adaptivenonzero' | |
| def make_model(self): | |
| return BeatGANsEncoderModel(self) | |
| class BeatGANsEncoderModel(nn.Module): | |
| """ | |
| The half UNet model with attention and timestep embedding. | |
| For usage, see UNet. | |
| """ | |
| def __init__(self, conf: BeatGANsEncoderConfig): | |
| super().__init__() | |
| self.conf = conf | |
| self.dtype = th.float32 | |
| if conf.use_time_condition: | |
| time_embed_dim = conf.model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(conf.model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| else: | |
| time_embed_dim = None | |
| ch = int(conf.channel_mult[0] * conf.model_channels) | |
| self.input_blocks = nn.ModuleList([ | |
| TimestepEmbedSequential( | |
| conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) | |
| ]) | |
| self._feature_size = ch | |
| input_block_chans = [ch] | |
| ds = 1 | |
| resolution = conf.image_size | |
| for level, mult in enumerate(conf.channel_mult): | |
| for _ in range(conf.num_res_blocks): | |
| layers = [ | |
| ResBlockConfig( | |
| ch, | |
| time_embed_dim, | |
| conf.dropout, | |
| out_channels=int(mult * conf.model_channels), | |
| dims=conf.dims, | |
| use_condition=conf.use_time_condition, | |
| use_checkpoint=conf.use_checkpoint, | |
| ).make_model() | |
| ] | |
| ch = int(mult * conf.model_channels) | |
| if resolution in conf.attention_resolutions: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=conf.use_checkpoint, | |
| num_heads=conf.num_heads, | |
| num_head_channels=conf.num_head_channels, | |
| use_new_attention_order=conf. | |
| use_new_attention_order, | |
| )) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(conf.channel_mult) - 1: | |
| resolution //= 2 | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlockConfig( | |
| ch, | |
| time_embed_dim, | |
| conf.dropout, | |
| out_channels=out_ch, | |
| dims=conf.dims, | |
| use_condition=conf.use_time_condition, | |
| use_checkpoint=conf.use_checkpoint, | |
| down=True, | |
| ).make_model() if ( | |
| conf.resblock_updown | |
| ) else Downsample(ch, | |
| conf.conv_resample, | |
| dims=conf.dims, | |
| out_channels=out_ch))) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| self._feature_size += ch | |
| self.middle_block = TimestepEmbedSequential( | |
| ResBlockConfig( | |
| ch, | |
| time_embed_dim, | |
| conf.dropout, | |
| dims=conf.dims, | |
| use_condition=conf.use_time_condition, | |
| use_checkpoint=conf.use_checkpoint, | |
| ).make_model(), | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=conf.use_checkpoint, | |
| num_heads=conf.num_heads, | |
| num_head_channels=conf.num_head_channels, | |
| use_new_attention_order=conf.use_new_attention_order, | |
| ), | |
| ResBlockConfig( | |
| ch, | |
| time_embed_dim, | |
| conf.dropout, | |
| dims=conf.dims, | |
| use_condition=conf.use_time_condition, | |
| use_checkpoint=conf.use_checkpoint, | |
| ).make_model(), | |
| ) | |
| self._feature_size += ch | |
| if conf.pool == "adaptivenonzero": | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| nn.AdaptiveAvgPool2d((1, 1)), | |
| conv_nd(conf.dims, ch, conf.out_channels, 1), | |
| nn.Flatten(), | |
| ) | |
| else: | |
| raise NotImplementedError(f"Unexpected {conf.pool} pooling") | |
| def forward(self, x, t=None, return_2d_feature=False): | |
| """ | |
| Apply the model to an input batch. | |
| :param x: an [N x C x ...] Tensor of inputs. | |
| :param timesteps: a 1-D batch of timesteps. | |
| :return: an [N x K] Tensor of outputs. | |
| """ | |
| if self.conf.use_time_condition: | |
| emb = self.time_embed(timestep_embedding(t, self.model_channels)) | |
| else: | |
| emb = None | |
| results = [] | |
| h = x.type(self.dtype) | |
| for module in self.input_blocks: | |
| h = module(h, emb=emb) | |
| if self.conf.pool.startswith("spatial"): | |
| results.append(h.type(x.dtype).mean(dim=(2, 3))) | |
| h = self.middle_block(h, emb=emb) | |
| if self.conf.pool.startswith("spatial"): | |
| results.append(h.type(x.dtype).mean(dim=(2, 3))) | |
| h = th.cat(results, axis=-1) | |
| else: | |
| h = h.type(x.dtype) | |
| h_2d = h | |
| h = self.out(h) | |
| if return_2d_feature: | |
| return h, h_2d | |
| else: | |
| return h | |
| def forward_flatten(self, x): | |
| """ | |
| transform the last 2d feature into a flatten vector | |
| """ | |
| h = self.out(x) | |
| return h | |
| class SuperResModel(BeatGANsUNetModel): | |
| """ | |
| A UNetModel that performs super-resolution. | |
| Expects an extra kwarg `low_res` to condition on a low-resolution image. | |
| """ | |
| def __init__(self, image_size, in_channels, *args, **kwargs): | |
| super().__init__(image_size, in_channels * 2, *args, **kwargs) | |
| def forward(self, x, timesteps, low_res=None, **kwargs): | |
| _, _, new_height, new_width = x.shape | |
| upsampled = F.interpolate(low_res, (new_height, new_width), | |
| mode="bilinear") | |
| x = th.cat([x, upsampled], dim=1) | |
| return super().forward(x, timesteps, **kwargs) | |