Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,403 +0,0 @@
|
|
1 |
-
|
2 |
-
import argparse
|
3 |
-
from datetime import datetime
|
4 |
-
from pathlib import Path
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from PIL import Image
|
8 |
-
import gradio as gr
|
9 |
-
import shutil
|
10 |
-
import librosa
|
11 |
-
import python_speech_features
|
12 |
-
import time
|
13 |
-
from LIA_Model import LIA_Model
|
14 |
-
import os
|
15 |
-
from tqdm import tqdm
|
16 |
-
import argparse
|
17 |
-
import numpy as np
|
18 |
-
from torchvision import transforms
|
19 |
-
from templates import *
|
20 |
-
import argparse
|
21 |
-
import shutil
|
22 |
-
from moviepy.editor import *
|
23 |
-
import librosa
|
24 |
-
import python_speech_features
|
25 |
-
import importlib.util
|
26 |
-
import time
|
27 |
-
import os
|
28 |
-
import time
|
29 |
-
import numpy as np
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# Disable Gradio analytics to avoid network-related issues
|
34 |
-
gr.analytics_enabled = False
|
35 |
-
|
36 |
-
|
37 |
-
def check_package_installed(package_name):
|
38 |
-
package_spec = importlib.util.find_spec(package_name)
|
39 |
-
if package_spec is None:
|
40 |
-
print(f"{package_name} is not installed.")
|
41 |
-
return False
|
42 |
-
else:
|
43 |
-
print(f"{package_name} is installed.")
|
44 |
-
return True
|
45 |
-
|
46 |
-
def frames_to_video(input_path, audio_path, output_path, fps=25):
|
47 |
-
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
|
48 |
-
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
|
49 |
-
video = concatenate_videoclips(clips, method="compose")
|
50 |
-
|
51 |
-
audio = AudioFileClip(audio_path)
|
52 |
-
final_video = video.set_audio(audio)
|
53 |
-
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
|
54 |
-
|
55 |
-
def load_image(filename, size):
|
56 |
-
img = Image.open(filename).convert('RGB')
|
57 |
-
img = img.resize((size, size))
|
58 |
-
img = np.asarray(img)
|
59 |
-
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
60 |
-
return img / 255.0
|
61 |
-
|
62 |
-
def img_preprocessing(img_path, size):
|
63 |
-
img = load_image(img_path, size) # [0, 1]
|
64 |
-
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
65 |
-
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
66 |
-
return imgs_norm
|
67 |
-
|
68 |
-
def saved_image(img_tensor, img_path):
|
69 |
-
toPIL = transforms.ToPILImage()
|
70 |
-
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
|
71 |
-
img.save(img_path)
|
72 |
-
|
73 |
-
def main(args):
|
74 |
-
frames_result_saved_path = os.path.join(args.result_path, 'frames')
|
75 |
-
os.makedirs(frames_result_saved_path, exist_ok=True)
|
76 |
-
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
|
77 |
-
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
|
78 |
-
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
|
79 |
-
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
|
80 |
-
|
81 |
-
#======Loading Stage 1 model=========
|
82 |
-
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
|
83 |
-
lia.load_lightning_model(args.stage1_checkpoint_path)
|
84 |
-
lia.to(args.device)
|
85 |
-
#============================
|
86 |
-
|
87 |
-
conf = ffhq256_autoenc()
|
88 |
-
conf.seed = args.seed
|
89 |
-
conf.decoder_layers = args.decoder_layers
|
90 |
-
conf.infer_type = args.infer_type
|
91 |
-
conf.motion_dim = args.motion_dim
|
92 |
-
|
93 |
-
if args.infer_type == 'mfcc_full_control':
|
94 |
-
conf.face_location=True
|
95 |
-
conf.face_scale=True
|
96 |
-
conf.mfcc = True
|
97 |
-
elif args.infer_type == 'mfcc_pose_only':
|
98 |
-
conf.face_location=False
|
99 |
-
conf.face_scale=False
|
100 |
-
conf.mfcc = True
|
101 |
-
elif args.infer_type == 'hubert_pose_only':
|
102 |
-
conf.face_location=False
|
103 |
-
conf.face_scale=False
|
104 |
-
conf.mfcc = False
|
105 |
-
elif args.infer_type == 'hubert_audio_only':
|
106 |
-
conf.face_location=False
|
107 |
-
conf.face_scale=False
|
108 |
-
conf.mfcc = False
|
109 |
-
elif args.infer_type == 'hubert_full_control':
|
110 |
-
conf.face_location=True
|
111 |
-
conf.face_scale=True
|
112 |
-
conf.mfcc = False
|
113 |
-
else:
|
114 |
-
print('Type NOT Found!')
|
115 |
-
exit(0)
|
116 |
-
|
117 |
-
if not os.path.exists(args.test_image_path):
|
118 |
-
print(f'{args.test_image_path} does not exist!')
|
119 |
-
exit(0)
|
120 |
-
|
121 |
-
if not os.path.exists(args.test_audio_path):
|
122 |
-
print(f'{args.test_audio_path} does not exist!')
|
123 |
-
exit(0)
|
124 |
-
|
125 |
-
img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device)
|
126 |
-
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
|
127 |
-
|
128 |
-
#======Loading Stage 2 model=========
|
129 |
-
model = LitModel(conf)
|
130 |
-
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
|
131 |
-
model.load_state_dict(state, strict=True)
|
132 |
-
model.ema_model.eval()
|
133 |
-
model.ema_model.to(args.device)
|
134 |
-
#=================================
|
135 |
-
|
136 |
-
#======Audio Input=========
|
137 |
-
if conf.infer_type.startswith('mfcc'):
|
138 |
-
# MFCC features
|
139 |
-
wav, sr = librosa.load(args.test_audio_path, sr=16000)
|
140 |
-
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
|
141 |
-
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
|
142 |
-
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
|
143 |
-
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
|
144 |
-
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
|
145 |
-
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
|
146 |
-
|
147 |
-
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
|
148 |
-
|
149 |
-
elif conf.infer_type.startswith('hubert'):
|
150 |
-
# Hubert features
|
151 |
-
if not os.path.exists(args.test_hubert_path):
|
152 |
-
|
153 |
-
if not check_package_installed('transformers'):
|
154 |
-
print('Please install transformers module first.')
|
155 |
-
exit(0)
|
156 |
-
hubert_model_path = './ckpts/chinese-hubert-large'
|
157 |
-
if not os.path.exists(hubert_model_path):
|
158 |
-
print('Please download the hubert weight into the ckpts path first.')
|
159 |
-
exit(0)
|
160 |
-
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
|
161 |
-
|
162 |
-
start_time = time.time()
|
163 |
-
|
164 |
-
# load hubert model
|
165 |
-
from transformers import Wav2Vec2FeatureExtractor, HubertModel
|
166 |
-
audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device)
|
167 |
-
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
|
168 |
-
audio_model.feature_extractor._freeze_parameters()
|
169 |
-
audio_model.eval()
|
170 |
-
|
171 |
-
# hubert model forward pass
|
172 |
-
audio, sr = librosa.load(args.test_audio_path, sr=16000)
|
173 |
-
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
|
174 |
-
input_values = input_values.to(args.device)
|
175 |
-
ws_feats = []
|
176 |
-
with torch.no_grad():
|
177 |
-
outputs = audio_model(input_values, output_hidden_states=True)
|
178 |
-
for i in range(len(outputs.hidden_states)):
|
179 |
-
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
|
180 |
-
ws_feat_obj = np.array(ws_feats)
|
181 |
-
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
|
182 |
-
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
|
183 |
-
|
184 |
-
execution_time = time.time() - start_time
|
185 |
-
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
|
186 |
-
|
187 |
-
audio_driven_obj = ws_feat_obj
|
188 |
-
else:
|
189 |
-
print(f'Using audio feature from path: {args.test_hubert_path}')
|
190 |
-
audio_driven_obj = np.load(args.test_hubert_path)
|
191 |
-
|
192 |
-
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
|
193 |
-
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
|
194 |
-
|
195 |
-
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
|
196 |
-
#============================
|
197 |
-
|
198 |
-
# Diffusion Noise
|
199 |
-
noisyT = torch.randn((1,frame_end, args.motion_dim)).to(args.device)
|
200 |
-
|
201 |
-
#======Inputs for Attribute Control=========
|
202 |
-
if os.path.exists(args.pose_driven_path):
|
203 |
-
pose_obj = np.load(args.pose_driven_path)
|
204 |
-
|
205 |
-
if len(pose_obj.shape) != 2:
|
206 |
-
print('please check your pose information. The shape must be like (T, 3).')
|
207 |
-
exit(0)
|
208 |
-
if pose_obj.shape[1] != 3:
|
209 |
-
print('please check your pose information. The shape must be like (T, 3).')
|
210 |
-
exit(0)
|
211 |
-
|
212 |
-
if pose_obj.shape[0] >= frame_end:
|
213 |
-
pose_obj = pose_obj[:frame_end,:]
|
214 |
-
else:
|
215 |
-
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
|
216 |
-
pose_obj = np.vstack((pose_obj, padding))
|
217 |
-
|
218 |
-
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here
|
219 |
-
else:
|
220 |
-
yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw
|
221 |
-
pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch
|
222 |
-
roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll
|
223 |
-
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
|
224 |
-
|
225 |
-
pose_signal = torch.clamp(pose_signal, -1, 1)
|
226 |
-
|
227 |
-
face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location
|
228 |
-
face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale
|
229 |
-
#===========================================
|
230 |
-
|
231 |
-
start_time = time.time()
|
232 |
-
|
233 |
-
#======Diffusion Denosing Process=========
|
234 |
-
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
|
235 |
-
#=========================================
|
236 |
-
|
237 |
-
execution_time = time.time() - start_time
|
238 |
-
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
|
239 |
-
|
240 |
-
generated_directions = generated_directions.detach().cpu().numpy()
|
241 |
-
|
242 |
-
start_time = time.time()
|
243 |
-
#======Rendering images frame-by-frame=========
|
244 |
-
for pred_index in tqdm(range(generated_directions.shape[1])):
|
245 |
-
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats)
|
246 |
-
ori_img_recon = ori_img_recon.clamp(-1, 1)
|
247 |
-
wav_pred = (ori_img_recon.detach() + 1) / 2
|
248 |
-
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
|
249 |
-
#==============================================
|
250 |
-
|
251 |
-
execution_time = time.time() - start_time
|
252 |
-
print(f"Renderer Model: {execution_time:.2f} Seconds")
|
253 |
-
|
254 |
-
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
|
255 |
-
|
256 |
-
shutil.rmtree(frames_result_saved_path)
|
257 |
-
|
258 |
-
# Enhancer
|
259 |
-
if args.face_sr and check_package_installed('gfpgan'):
|
260 |
-
from face_sr.face_enhancer import enhancer_list
|
261 |
-
import imageio
|
262 |
-
|
263 |
-
# Super-resolution
|
264 |
-
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
|
265 |
-
|
266 |
-
# Merge audio and video
|
267 |
-
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
|
268 |
-
audio_clip = AudioFileClip(predicted_video_256_path)
|
269 |
-
final_clip = video_clip.set_audio(audio_clip)
|
270 |
-
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
|
271 |
-
|
272 |
-
os.remove(predicted_video_512_path+'.tmp.mp4')
|
273 |
-
|
274 |
-
if args.face_sr:
|
275 |
-
return predicted_video_256_path, predicted_video_512_path
|
276 |
-
else:
|
277 |
-
return predicted_video_256_path, predicted_video_256_path
|
278 |
-
|
279 |
-
def generate_video(uploaded_img, uploaded_audio, infer_type,
|
280 |
-
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, device, face_sr, seed):
|
281 |
-
if uploaded_img is None or uploaded_audio is None:
|
282 |
-
return None, gr.Markdown("Error: Input image or audio file is empty. Please check and upload both files.")
|
283 |
-
|
284 |
-
model_mapping = {
|
285 |
-
"mfcc_pose_only": "./ckpts/stage2_pose_only_mfcc.ckpt",
|
286 |
-
"mfcc_full_control": "./ckpts/stage2_more_controllable_mfcc.ckpt",
|
287 |
-
"hubert_audio_only": "./ckpts/stage2_audio_only_hubert.ckpt",
|
288 |
-
"hubert_pose_only": "./ckpts/stage2_pose_only_hubert.ckpt",
|
289 |
-
"hubert_full_control": "./ckpts/stage2_full_control_hubert.ckpt",
|
290 |
-
}
|
291 |
-
|
292 |
-
# if face_crop:
|
293 |
-
# uploaded_img_path = Path(uploaded_img)
|
294 |
-
# cropped_img_path = uploaded_img_path.with_name(uploaded_img_path.stem + "_crop" + uploaded_img_path.suffix)
|
295 |
-
# crop_image(uploaded_img, cropped_img_path)
|
296 |
-
# uploaded_img = str(cropped_img_path)
|
297 |
-
|
298 |
-
# import pdb;pdb.set_trace()
|
299 |
-
|
300 |
-
stage2_checkpoint_path = model_mapping.get(infer_type, "default_checkpoint.ckpt")
|
301 |
-
try:
|
302 |
-
args = argparse.Namespace(
|
303 |
-
infer_type=infer_type,
|
304 |
-
test_image_path=uploaded_img,
|
305 |
-
test_audio_path=uploaded_audio,
|
306 |
-
test_hubert_path='',
|
307 |
-
result_path='./outputs/',
|
308 |
-
stage1_checkpoint_path='./ckpts/stage1.ckpt',
|
309 |
-
stage2_checkpoint_path=stage2_checkpoint_path,
|
310 |
-
seed=seed,
|
311 |
-
control_flag=True,
|
312 |
-
pose_yaw=pose_yaw,
|
313 |
-
pose_pitch=pose_pitch,
|
314 |
-
pose_roll=pose_roll,
|
315 |
-
face_location=face_location,
|
316 |
-
pose_driven_path='not_supported_in_this_mode',
|
317 |
-
face_scale=face_scale,
|
318 |
-
step_T=step_T,
|
319 |
-
image_size=256,
|
320 |
-
device=device,
|
321 |
-
motion_dim=20,
|
322 |
-
decoder_layers=2,
|
323 |
-
face_sr=face_sr
|
324 |
-
)
|
325 |
-
|
326 |
-
# Save the uploaded audio to the expected path
|
327 |
-
# shutil.copy(uploaded_audio, args.test_audio_path)
|
328 |
-
|
329 |
-
# Run the main function
|
330 |
-
output_256_video_path, output_512_video_path = main(args)
|
331 |
-
|
332 |
-
# Check if the output video file exists
|
333 |
-
if not os.path.exists(output_256_video_path):
|
334 |
-
return None, gr.Markdown("Error: Video generation failed. Please check your inputs and try again.")
|
335 |
-
if output_256_video_path == output_512_video_path:
|
336 |
-
return gr.Video(value=output_256_video_path), None, gr.Markdown("Video (256*256 only) generated successfully!")
|
337 |
-
return gr.Video(value=output_256_video_path), gr.Video(value=output_512_video_path), gr.Markdown("Video generated successfully!")
|
338 |
-
|
339 |
-
except Exception as e:
|
340 |
-
return None, None, gr.Markdown(f"Error: An unexpected error occurred - {str(e)}")
|
341 |
-
|
342 |
-
default_values = {
|
343 |
-
"pose_yaw": 0,
|
344 |
-
"pose_pitch": 0,
|
345 |
-
"pose_roll": 0,
|
346 |
-
"face_location": 0.5,
|
347 |
-
"face_scale": 0.5,
|
348 |
-
"step_T": 50,
|
349 |
-
"seed": 0,
|
350 |
-
"device": "cuda"
|
351 |
-
}
|
352 |
-
|
353 |
-
with gr.Blocks() as demo:
|
354 |
-
gr.Markdown('# AniTalker')
|
355 |
-
gr.Markdown('![]()')
|
356 |
-
with gr.Row():
|
357 |
-
with gr.Column():
|
358 |
-
uploaded_img = gr.Image(type="filepath", label="Reference Image")
|
359 |
-
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
|
360 |
-
with gr.Column():
|
361 |
-
output_video_256 = gr.Video(label="Generated Video (256)")
|
362 |
-
output_video_512 = gr.Video(label="Generated Video (512)")
|
363 |
-
output_message = gr.Markdown()
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
generate_button = gr.Button("Generate Video")
|
368 |
-
|
369 |
-
with gr.Accordion("Configuration", open=True):
|
370 |
-
infer_type = gr.Dropdown(
|
371 |
-
label="Inference Type",
|
372 |
-
choices=['mfcc_pose_only', 'mfcc_full_control', 'hubert_audio_only', 'hubert_pose_only'],
|
373 |
-
value='hubert_audio_only'
|
374 |
-
)
|
375 |
-
face_sr = gr.Checkbox(label="Enable Face Super-Resolution (512*512)", value=False)
|
376 |
-
# face_crop = gr.Checkbox(label="Face Crop (Dlib)", value=False)
|
377 |
-
# face_crop = False # TODO
|
378 |
-
seed = gr.Number(label="Seed", value=default_values["seed"])
|
379 |
-
pose_yaw = gr.Slider(label="pose_yaw", minimum=-1, maximum=1, value=default_values["pose_yaw"])
|
380 |
-
pose_pitch = gr.Slider(label="pose_pitch", minimum=-1, maximum=1, value=default_values["pose_pitch"])
|
381 |
-
pose_roll = gr.Slider(label="pose_roll", minimum=-1, maximum=1, value=default_values["pose_roll"])
|
382 |
-
face_location = gr.Slider(label="face_location", minimum=0, maximum=1, value=default_values["face_location"])
|
383 |
-
face_scale = gr.Slider(label="face_scale", minimum=0, maximum=1, value=default_values["face_scale"])
|
384 |
-
step_T = gr.Slider(label="step_T", minimum=1, maximum=100, step=1, value=default_values["step_T"])
|
385 |
-
device = gr.Radio(label="Device", choices=["cuda", "cpu"], value=default_values["device"])
|
386 |
-
|
387 |
-
|
388 |
-
generate_button.click(
|
389 |
-
generate_video,
|
390 |
-
inputs=[
|
391 |
-
uploaded_img, uploaded_audio, infer_type,
|
392 |
-
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, device, face_sr, seed
|
393 |
-
],
|
394 |
-
outputs=[output_video_256, output_video_512, output_message]
|
395 |
-
)
|
396 |
-
|
397 |
-
if __name__ == '__main__':
|
398 |
-
parser = argparse.ArgumentParser(description='EchoMimic')
|
399 |
-
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
|
400 |
-
parser.add_argument('--server_port', type=int, default=3001, help='Server port')
|
401 |
-
args = parser.parse_args()
|
402 |
-
|
403 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|