Story / app.py
DemahAlmutairi's picture
Update app.py
c9f4cf9 verified
raw
history blame
1.15 kB
import gradio as gr
from transformers import pipeline
# Load the multilingual model for text generation
model_name = "google/mt5-small"
text_generator = pipeline("text-generation", model=model_name)
def generate_text(prompt, language):
# Depending on the language, prepend a language token if needed
if language == "Arabic":
prompt = "<ar>" + prompt
else: # English
prompt = "<en>" + prompt
generated_text = text_generator(prompt, max_length=200, num_return_sequences=1)
return generated_text[0]['generated_text']
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Bilingual Text Generator")
with gr.Row():
language_choice = gr.Radio(choices=["English", "Arabic"], label="Select Language")
prompt_input = gr.Textbox(label="Enter your prompt", placeholder="Type your prompt here...")
generate_button = gr.Button("Generate Text")
output_text = gr.Textbox(label="Generated Text", interactive=False)
generate_button.click(generate_text, inputs=[prompt_input, language_choice], outputs=output_text)
# Launch the Gradio app
demo.launch()