Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| modified from https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/dual_path.py | |
| Author: Shengkui Zhao | |
| """ | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import copy | |
| from models.mossformer2_se.mossformer2_block import ScaledSinuEmbedding, MossformerBlock_GFSMN, MossformerBlock | |
| EPS = 1e-8 | |
| class GlobalLayerNorm(nn.Module): | |
| """Calculate Global Layer Normalization. | |
| Arguments | |
| --------- | |
| dim : (int or list or torch.Size) | |
| Input shape from an expected input of size. | |
| eps : float | |
| A value added to the denominator for numerical stability. | |
| elementwise_affine : bool | |
| A boolean value that when set to True, | |
| this module has learnable per-element affine parameters | |
| initialized to ones (for weights) and zeros (for biases). | |
| Example | |
| ------- | |
| >>> x = torch.randn(5, 10, 20) | |
| >>> GLN = GlobalLayerNorm(10, 3) | |
| >>> x_norm = GLN(x) | |
| """ | |
| def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True): | |
| super(GlobalLayerNorm, self).__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.elementwise_affine = elementwise_affine | |
| if self.elementwise_affine: | |
| if shape == 3: | |
| self.weight = nn.Parameter(torch.ones(self.dim, 1)) | |
| self.bias = nn.Parameter(torch.zeros(self.dim, 1)) | |
| if shape == 4: | |
| self.weight = nn.Parameter(torch.ones(self.dim, 1, 1)) | |
| self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1)) | |
| else: | |
| self.register_parameter("weight", None) | |
| self.register_parameter("bias", None) | |
| def forward(self, x): | |
| """Returns the normalized tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Tensor of size [N, C, K, S] or [N, C, L]. | |
| """ | |
| # x = N x C x K x S or N x C x L | |
| # N x 1 x 1 | |
| # cln: mean,var N x 1 x K x S | |
| # gln: mean,var N x 1 x 1 | |
| if x.dim() == 3: | |
| mean = torch.mean(x, (1, 2), keepdim=True) | |
| var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True) | |
| if self.elementwise_affine: | |
| x = ( | |
| self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
| + self.bias | |
| ) | |
| else: | |
| x = (x - mean) / torch.sqrt(var + self.eps) | |
| if x.dim() == 4: | |
| mean = torch.mean(x, (1, 2, 3), keepdim=True) | |
| var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True) | |
| if self.elementwise_affine: | |
| x = ( | |
| self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
| + self.bias | |
| ) | |
| else: | |
| x = (x - mean) / torch.sqrt(var + self.eps) | |
| return x | |
| class CumulativeLayerNorm(nn.LayerNorm): | |
| """Calculate Cumulative Layer Normalization. | |
| Arguments | |
| --------- | |
| dim : int | |
| Dimension that you want to normalize. | |
| elementwise_affine : True | |
| Learnable per-element affine parameters. | |
| Example | |
| ------- | |
| >>> x = torch.randn(5, 10, 20) | |
| >>> CLN = CumulativeLayerNorm(10) | |
| >>> x_norm = CLN(x) | |
| """ | |
| def __init__(self, dim, elementwise_affine=True): | |
| super(CumulativeLayerNorm, self).__init__( | |
| dim, elementwise_affine=elementwise_affine, eps=1e-8 | |
| ) | |
| def forward(self, x): | |
| """Returns the normalized tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Tensor size [N, C, K, S] or [N, C, L] | |
| """ | |
| # x: N x C x K x S or N x C x L | |
| # N x K x S x C | |
| if x.dim() == 4: | |
| x = x.permute(0, 2, 3, 1).contiguous() | |
| # N x K x S x C == only channel norm | |
| x = super().forward(x) | |
| # N x C x K x S | |
| x = x.permute(0, 3, 1, 2).contiguous() | |
| if x.dim() == 3: | |
| x = torch.transpose(x, 1, 2) | |
| # N x L x C == only channel norm | |
| x = super().forward(x) | |
| # N x C x L | |
| x = torch.transpose(x, 1, 2) | |
| return x | |
| def select_norm(norm, dim, shape): | |
| """Just a wrapper to select the normalization type. | |
| """ | |
| if norm == "gln": | |
| return GlobalLayerNorm(dim, shape, elementwise_affine=True) | |
| if norm == "cln": | |
| return CumulativeLayerNorm(dim, elementwise_affine=True) | |
| if norm == "ln": | |
| return nn.GroupNorm(1, dim, eps=1e-8) | |
| else: | |
| return nn.BatchNorm1d(dim) | |
| class Encoder(nn.Module): | |
| """Convolutional Encoder Layer. | |
| Arguments | |
| --------- | |
| kernel_size : int | |
| Length of filters. | |
| in_channels : int | |
| Number of input channels. | |
| out_channels : int | |
| Number of output channels. | |
| Example | |
| ------- | |
| >>> x = torch.randn(2, 1000) | |
| >>> encoder = Encoder(kernel_size=4, out_channels=64) | |
| >>> h = encoder(x) | |
| >>> h.shape | |
| torch.Size([2, 64, 499]) | |
| """ | |
| def __init__(self, kernel_size=2, out_channels=64, in_channels=1): | |
| super(Encoder, self).__init__() | |
| self.conv1d = nn.Conv1d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=kernel_size // 2, | |
| groups=1, | |
| bias=False, | |
| ) | |
| self.in_channels = in_channels | |
| def forward(self, x): | |
| """Return the encoded output. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Input tensor with dimensionality [B, L]. | |
| Return | |
| ------ | |
| x : torch.Tensor | |
| Encoded tensor with dimensionality [B, N, T_out]. | |
| where B = Batchsize | |
| L = Number of timepoints | |
| N = Number of filters | |
| T_out = Number of timepoints at the output of the encoder | |
| """ | |
| # B x L -> B x 1 x L | |
| if self.in_channels == 1: | |
| x = torch.unsqueeze(x, dim=1) | |
| # B x 1 x L -> B x N x T_out | |
| x = self.conv1d(x) | |
| x = F.relu(x) | |
| return x | |
| class Decoder(nn.ConvTranspose1d): | |
| """A decoder layer that consists of ConvTranspose1d. | |
| Arguments | |
| --------- | |
| kernel_size : int | |
| Length of filters. | |
| in_channels : int | |
| Number of input channels. | |
| out_channels : int | |
| Number of output channels. | |
| Example | |
| --------- | |
| >>> x = torch.randn(2, 100, 1000) | |
| >>> decoder = Decoder(kernel_size=4, in_channels=100, out_channels=1) | |
| >>> h = decoder(x) | |
| >>> h.shape | |
| torch.Size([2, 1003]) | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super(Decoder, self).__init__(*args, **kwargs) | |
| def forward(self, x): | |
| """Return the decoded output. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Input tensor with dimensionality [B, N, L]. | |
| where, B = Batchsize, | |
| N = number of filters | |
| L = time points | |
| """ | |
| if x.dim() not in [2, 3]: | |
| raise RuntimeError( | |
| "{} accept 3/4D tensor as input".format(self.__name__) | |
| ) | |
| x = super().forward(x if x.dim() == 3 else torch.unsqueeze(x, 1)) | |
| if torch.squeeze(x).dim() == 1: | |
| x = torch.squeeze(x, dim=1) | |
| else: | |
| x = torch.squeeze(x) | |
| return x | |
| class IdentityBlock: | |
| """This block is used when we want to have identity transformation within the Dual_path block. | |
| Example | |
| ------- | |
| >>> x = torch.randn(10, 100) | |
| >>> IB = IdentityBlock() | |
| >>> xhat = IB(x) | |
| """ | |
| def _init__(self, **kwargs): | |
| pass | |
| def __call__(self, x): | |
| return x | |
| class MossFormerM(nn.Module): | |
| """This class implements the transformer encoder based on MossFormer2 layers. | |
| Arguments | |
| --------- | |
| num_blocks : int | |
| Number of mossformer2 blocks to include. | |
| d_model : int | |
| The dimension of the input embedding. | |
| attn_dropout : float | |
| Dropout for the self-attention (Optional). | |
| group_size: int | |
| the chunk size for segmenting sequence | |
| query_key_dim: int | |
| the attention vector dimension | |
| expansion_factor: int | |
| the expansion factor for the linear projection in conv module | |
| causal: bool | |
| true for causal / false for non causal | |
| Example | |
| ------- | |
| >>> import torch | |
| >>> x = torch.rand((8, 60, 512)) | |
| >>> net = MossFormerM(num_blocks=8, d_model=512) | |
| >>> output, _ = net(x) | |
| >>> output.shape | |
| torch.Size([8, 60, 512]) | |
| """ | |
| def __init__( | |
| self, | |
| num_blocks, | |
| d_model=None, | |
| causal=False, | |
| group_size = 256, | |
| query_key_dim = 128, | |
| expansion_factor = 4., | |
| attn_dropout = 0.1 | |
| ): | |
| super().__init__() | |
| self.mossformerM = MossformerBlock_GFSMN( | |
| dim=d_model, | |
| depth=num_blocks, | |
| group_size=group_size, | |
| query_key_dim=query_key_dim, | |
| expansion_factor=expansion_factor, | |
| causal=causal, | |
| attn_dropout=attn_dropout | |
| ) | |
| self.norm = nn.LayerNorm(d_model, eps=1e-6) | |
| def forward( | |
| self, | |
| src, | |
| ): | |
| """ | |
| Arguments | |
| ---------- | |
| src : torch.Tensor | |
| Tensor shape [B, L, N], | |
| where, B = Batchsize, | |
| L = time points | |
| N = number of filters | |
| The sequence to the encoder layer (required). | |
| src_mask : tensor | |
| The mask for the src sequence (optional). | |
| src_key_padding_mask : tensor | |
| The mask for the src keys per batch (optional). | |
| """ | |
| output = self.mossformerM(src) | |
| output = self.norm(output) | |
| return output | |
| class MossFormerM2(nn.Module): | |
| """This class implements the transformer encoder. | |
| Arguments | |
| --------- | |
| num_blocks : int | |
| Number of mossformer blocks to include. | |
| d_model : int | |
| The dimension of the input embedding. | |
| attn_dropout : float | |
| Dropout for the self-attention (Optional). | |
| group_size: int | |
| the chunk size | |
| query_key_dim: int | |
| the attention vector dimension | |
| expansion_factor: int | |
| the expansion factor for the linear projection in conv module | |
| causal: bool | |
| true for causal / false for non causal | |
| Example | |
| ------- | |
| >>> import torch | |
| >>> x = torch.rand((8, 60, 512)) | |
| >>> net = MossFormerM2(num_blocks=8, d_model=512) | |
| >>> output, _ = net(x) | |
| >>> output.shape | |
| torch.Size([8, 60, 512]) | |
| """ | |
| def __init__( | |
| self, | |
| num_blocks, | |
| d_model=None, | |
| causal=False, | |
| group_size = 256, | |
| query_key_dim = 128, | |
| expansion_factor = 4., | |
| attn_dropout = 0.1 | |
| ): | |
| super().__init__() | |
| self.mossformerM = MossformerBlock( | |
| dim=d_model, | |
| depth=num_blocks, | |
| group_size=group_size, | |
| query_key_dim=query_key_dim, | |
| expansion_factor=expansion_factor, | |
| causal=causal, | |
| attn_dropout=attn_dropout | |
| ) | |
| self.norm = nn.LayerNorm(d_model, eps=1e-6) | |
| def forward( | |
| self, | |
| src, | |
| ): | |
| """ | |
| Arguments | |
| ---------- | |
| src : torch.Tensor | |
| Tensor shape [B, L, N], | |
| where, B = Batchsize, | |
| L = time points | |
| N = number of filters | |
| The sequence to the encoder layer (required). | |
| src_mask : tensor | |
| The mask for the src sequence (optional). | |
| src_key_padding_mask : tensor | |
| The mask for the src keys per batch (optional). | |
| """ | |
| output = self.mossformerM(src) | |
| output = self.norm(output) | |
| return output | |
| class Computation_Block(nn.Module): | |
| """Computation block for dual-path processing. | |
| Arguments | |
| --------- | |
| out_channels : int | |
| Dimensionality of model output. | |
| norm : str | |
| Normalization type. | |
| skip_around_intra : bool | |
| Skip connection around the intra layer. | |
| Example | |
| --------- | |
| >>> comp_block = Computation_Block(64) | |
| >>> x = torch.randn(10, 64, 100) | |
| >>> x = comp_block(x) | |
| >>> x.shape | |
| torch.Size([10, 64, 100]) | |
| """ | |
| def __init__( | |
| self, | |
| num_blocks, | |
| out_channels, | |
| norm="ln", | |
| skip_around_intra=True, | |
| ): | |
| super(Computation_Block, self).__init__() | |
| ##Default MossFormer2 model | |
| self.intra_mdl = MossFormerM(num_blocks=num_blocks, d_model=out_channels) | |
| ##The previous MossFormer model | |
| #self.intra_mdl = MossFormerM2(num_blocks=num_blocks, d_model=out_channels) | |
| self.skip_around_intra = skip_around_intra | |
| # Norm | |
| self.norm = norm | |
| if norm is not None: | |
| self.intra_norm = select_norm(norm, out_channels, 3) | |
| def forward(self, x): | |
| """Returns the output tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Input tensor of dimension [B, N, S]. | |
| Return | |
| --------- | |
| out: torch.Tensor | |
| Output tensor of dimension [B, N, S]. | |
| where, B = Batchsize, | |
| N = number of filters | |
| S = sequence time index | |
| """ | |
| B, N, S = x.shape | |
| # [B, S, N] | |
| intra = x.permute(0, 2, 1).contiguous() | |
| intra = self.intra_mdl(intra) | |
| # [B, N, S] | |
| intra = intra.permute(0, 2, 1).contiguous() | |
| if self.norm is not None: | |
| intra = self.intra_norm(intra) | |
| # [B, N, S] | |
| if self.skip_around_intra: | |
| intra = intra + x | |
| out = intra | |
| return out | |
| class MossFormer_MaskNet(nn.Module): | |
| """ | |
| The MossFormer MaskNet for mask prediction. | |
| This class is designed for predicting masks used in source separation tasks. | |
| It processes input tensors through various layers including convolutional layers, | |
| normalization, and a computation block to produce the final output. | |
| Arguments | |
| --------- | |
| in_channels : int | |
| Number of channels at the output of the encoder. | |
| out_channels : int | |
| Number of channels that would be inputted to the MossFormer2 blocks. | |
| out_channels_final : int | |
| Number of channels that are finally outputted. | |
| num_blocks : int | |
| Number of layers in the Dual Computation Block. | |
| norm : str | |
| Normalization type ('ln' for LayerNorm, 'bn' for BatchNorm, etc.). | |
| num_spks : int | |
| Number of sources (speakers). | |
| skip_around_intra : bool | |
| If True, applies skip connections around intra-block connections. | |
| use_global_pos_enc : bool | |
| If True, uses global positional encodings. | |
| max_length : int | |
| Maximum sequence length for input tensors. | |
| Example | |
| --------- | |
| >>> mossformer_masknet = MossFormer_MaskNet(64, 64, out_channels_final=8, num_spks=2) | |
| >>> x = torch.randn(10, 64, 2000) # Example input | |
| >>> x = mossformer_masknet(x) # Forward pass | |
| >>> x.shape # Expected output shape | |
| torch.Size([10, 2, 64, 2000]) | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| out_channels_final, | |
| num_blocks=24, | |
| norm="ln", | |
| num_spks=2, | |
| skip_around_intra=True, | |
| use_global_pos_enc=True, | |
| max_length=20000, | |
| ): | |
| super(MossFormer_MaskNet, self).__init__() | |
| # Initialize instance variables | |
| self.num_spks = num_spks # Number of sources | |
| self.num_blocks = num_blocks # Number of computation blocks | |
| self.norm = select_norm(norm, in_channels, 3) # Select normalization type | |
| self.conv1d_encoder = nn.Conv1d(in_channels, out_channels, 1, bias=False) # Encoder convolutional layer | |
| self.use_global_pos_enc = use_global_pos_enc # Flag for global positional encoding | |
| if self.use_global_pos_enc: | |
| self.pos_enc = ScaledSinuEmbedding(out_channels) # Initialize positional embedding | |
| # Define the computation block | |
| self.mdl = Computation_Block( | |
| num_blocks, | |
| out_channels, | |
| norm, | |
| skip_around_intra=skip_around_intra, | |
| ) | |
| # Output layers | |
| self.conv1d_out = nn.Conv1d(out_channels, out_channels * num_spks, kernel_size=1) # For multiple speakers | |
| self.conv1_decoder = nn.Conv1d(out_channels, out_channels_final, 1, bias=False) # Decoder layer | |
| self.prelu = nn.PReLU() # Activation function | |
| self.activation = nn.ReLU() # Final activation function | |
| # Gated output layers | |
| self.output = nn.Sequential( | |
| nn.Conv1d(out_channels, out_channels, 1), | |
| nn.Tanh() # Non-linear activation | |
| ) | |
| self.output_gate = nn.Sequential( | |
| nn.Conv1d(out_channels, out_channels, 1), | |
| nn.Sigmoid() # Gating mechanism | |
| ) | |
| def forward(self, x): | |
| """Returns the output tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Input tensor of dimension [B, N, S], where B is the batch size, | |
| N is the number of channels, and S is the sequence length. | |
| Returns | |
| ------- | |
| out : torch.Tensor | |
| Output tensor of dimension [B, spks, N, S], where spks is the number of sources | |
| (speakers) and is ordered such that the first index corresponds to the target speech. | |
| """ | |
| # Normalize the input | |
| # [B, N, L] | |
| x = self.norm(x) | |
| # Apply encoder convolution | |
| # [B, N, L] | |
| x = self.conv1d_encoder(x) | |
| if self.use_global_pos_enc: | |
| base = x # Store the base for adding positional embedding | |
| x = x.transpose(1, -1) # Change shape to [B, L, N] for positional encoding | |
| emb = self.pos_enc(x) # Get positional embeddings | |
| emb = emb.transpose(0, -1) # Change back to [B, N, L] | |
| x = base + emb # Add positional embeddings to the base | |
| # Process through the computation block | |
| # [B, N, S] | |
| x = self.mdl(x) | |
| x = self.prelu(x) # Apply activation | |
| # Expand to multiple speakers | |
| # [B, N*spks, S] | |
| x = self.conv1d_out(x) | |
| B, _, S = x.shape # Unpack the batch size and sequence length | |
| # Reshape to [B*spks, N, S] | |
| # This prepares the output for gating | |
| # [B*spks, N, S] | |
| x = x.view(B * self.num_spks, -1, S) | |
| # Apply gated output layers | |
| # [B*spks, N, S] | |
| x = self.output(x) * self.output_gate(x) # Element-wise multiplication for gating | |
| # Decode to final output | |
| # [B*spks, N, S] | |
| x = self.conv1_decoder(x) | |
| # Reshape to [B, spks, N, S] for output | |
| # [B, spks, N, S] | |
| _, N, L = x.shape | |
| x = x.view(B, self.num_spks, N, L) # Final reshaping for output | |
| x = self.activation(x) # Apply final activation | |
| # Transpose to [spks, B, N, S] for output | |
| # return the 1st spk signal as the target speech | |
| x = x.transpose(0, 1) | |
| return x[0].transpose(1, 2) # Return only the first speaker's signal | |