Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from torch import Tensor | |
| import torch.nn.init as init | |
| import torch.nn.functional as F | |
| EPS = 1e-8 | |
| class GlobalLayerNorm(nn.Module): | |
| """Calculate Global Layer Normalization. | |
| Arguments | |
| --------- | |
| dim : (int or list or torch.Size) | |
| Input shape from an expected input of size. | |
| eps : float | |
| A value added to the denominator for numerical stability. | |
| elementwise_affine : bool | |
| A boolean value that when set to True, | |
| this module has learnable per-element affine parameters | |
| initialized to ones (for weights) and zeros (for biases). | |
| Example | |
| ------- | |
| >>> x = torch.randn(5, 10, 20) | |
| >>> GLN = GlobalLayerNorm(10, 3) | |
| >>> x_norm = GLN(x) | |
| """ | |
| def __init__(self, dim, shape, eps=1e-8, elementwise_affine=True): | |
| super(GlobalLayerNorm, self).__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.elementwise_affine = elementwise_affine | |
| if self.elementwise_affine: | |
| if shape == 3: | |
| self.weight = nn.Parameter(torch.ones(self.dim, 1)) | |
| self.bias = nn.Parameter(torch.zeros(self.dim, 1)) | |
| if shape == 4: | |
| self.weight = nn.Parameter(torch.ones(self.dim, 1, 1)) | |
| self.bias = nn.Parameter(torch.zeros(self.dim, 1, 1)) | |
| else: | |
| self.register_parameter("weight", None) | |
| self.register_parameter("bias", None) | |
| def forward(self, x): | |
| """Returns the normalized tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Tensor of size [N, C, K, S] or [N, C, L]. | |
| """ | |
| # x = N x C x K x S or N x C x L | |
| # N x 1 x 1 | |
| # cln: mean,var N x 1 x K x S | |
| # gln: mean,var N x 1 x 1 | |
| if x.dim() == 3: | |
| mean = torch.mean(x, (1, 2), keepdim=True) | |
| var = torch.mean((x - mean) ** 2, (1, 2), keepdim=True) | |
| if self.elementwise_affine: | |
| x = ( | |
| self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
| + self.bias | |
| ) | |
| else: | |
| x = (x - mean) / torch.sqrt(var + self.eps) | |
| if x.dim() == 4: | |
| mean = torch.mean(x, (1, 2, 3), keepdim=True) | |
| var = torch.mean((x - mean) ** 2, (1, 2, 3), keepdim=True) | |
| if self.elementwise_affine: | |
| x = ( | |
| self.weight * (x - mean) / torch.sqrt(var + self.eps) | |
| + self.bias | |
| ) | |
| else: | |
| x = (x - mean) / torch.sqrt(var + self.eps) | |
| return x | |
| class CumulativeLayerNorm(nn.LayerNorm): | |
| """Calculate Cumulative Layer Normalization. | |
| Arguments | |
| --------- | |
| dim : int | |
| Dimension that you want to normalize. | |
| elementwise_affine : True | |
| Learnable per-element affine parameters. | |
| Example | |
| ------- | |
| >>> x = torch.randn(5, 10, 20) | |
| >>> CLN = CumulativeLayerNorm(10) | |
| >>> x_norm = CLN(x) | |
| """ | |
| def __init__(self, dim, elementwise_affine=True): | |
| super(CumulativeLayerNorm, self).__init__( | |
| dim, elementwise_affine=elementwise_affine, eps=1e-8 | |
| ) | |
| def forward(self, x): | |
| """Returns the normalized tensor. | |
| Arguments | |
| --------- | |
| x : torch.Tensor | |
| Tensor size [N, C, K, S] or [N, C, L] | |
| """ | |
| # x: N x C x K x S or N x C x L | |
| # N x K x S x C | |
| if x.dim() == 4: | |
| x = x.permute(0, 2, 3, 1).contiguous() | |
| # N x K x S x C == only channel norm | |
| x = super().forward(x) | |
| # N x C x K x S | |
| x = x.permute(0, 3, 1, 2).contiguous() | |
| if x.dim() == 3: | |
| x = torch.transpose(x, 1, 2) | |
| # N x L x C == only channel norm | |
| x = super().forward(x) | |
| # N x C x L | |
| x = torch.transpose(x, 1, 2) | |
| return x | |
| def select_norm(norm, dim, shape): | |
| """Just a wrapper to select the normalization type. | |
| """ | |
| if norm == "gln": | |
| return GlobalLayerNorm(dim, shape, elementwise_affine=True) | |
| if norm == "cln": | |
| return CumulativeLayerNorm(dim, elementwise_affine=True) | |
| if norm == "ln": | |
| return nn.GroupNorm(1, dim, eps=1e-8) | |
| else: | |
| return nn.BatchNorm1d(dim) | |
| class Swish(nn.Module): | |
| """ | |
| Swish is a smooth, non-monotonic function that consistently matches or outperforms ReLU on deep networks applied | |
| to a variety of challenging domains such as Image classification and Machine translation. | |
| """ | |
| def __init__(self): | |
| super(Swish, self).__init__() | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| return inputs * inputs.sigmoid() | |
| class GLU(nn.Module): | |
| """ | |
| The gating mechanism is called Gated Linear Units (GLU), which was first introduced for natural language processing | |
| in the paper “Language Modeling with Gated Convolutional Networks” | |
| """ | |
| def __init__(self, dim: int) -> None: | |
| super(GLU, self).__init__() | |
| self.dim = dim | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| outputs, gate = inputs.chunk(2, dim=self.dim) | |
| return outputs * gate.sigmoid() | |
| class Transpose(nn.Module): | |
| """ Wrapper class of torch.transpose() for Sequential module. """ | |
| def __init__(self, shape: tuple): | |
| super(Transpose, self).__init__() | |
| self.shape = shape | |
| def forward(self, x: Tensor) -> Tensor: | |
| return x.transpose(*self.shape) | |
| class Linear(nn.Module): | |
| """ | |
| Wrapper class of torch.nn.Linear | |
| Weight initialize by xavier initialization and bias initialize to zeros. | |
| """ | |
| def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: | |
| super(Linear, self).__init__() | |
| self.linear = nn.Linear(in_features, out_features, bias=bias) | |
| init.xavier_uniform_(self.linear.weight) | |
| if bias: | |
| init.zeros_(self.linear.bias) | |
| def forward(self, x: Tensor) -> Tensor: | |
| return self.linear(x) | |
| class DepthwiseConv1d(nn.Module): | |
| """ | |
| When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, | |
| this operation is termed in literature as depthwise convolution. | |
| Args: | |
| in_channels (int): Number of channels in the input | |
| out_channels (int): Number of channels produced by the convolution | |
| kernel_size (int or tuple): Size of the convolving kernel | |
| stride (int, optional): Stride of the convolution. Default: 1 | |
| padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 | |
| bias (bool, optional): If True, adds a learnable bias to the output. Default: True | |
| Inputs: inputs | |
| - **inputs** (batch, in_channels, time): Tensor containing input vector | |
| Returns: outputs | |
| - **outputs** (batch, out_channels, time): Tensor produces by depthwise 1-D convolution. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: int, | |
| stride: int = 1, | |
| padding: int = 0, | |
| bias: bool = False, | |
| ) -> None: | |
| super(DepthwiseConv1d, self).__init__() | |
| assert out_channels % in_channels == 0, "out_channels should be constant multiple of in_channels" | |
| self.conv = nn.Conv1d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| groups=in_channels, | |
| stride=stride, | |
| padding=padding, | |
| bias=bias, | |
| ) | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| return self.conv(inputs) | |
| class PointwiseConv1d(nn.Module): | |
| """ | |
| When kernel size == 1 conv1d, this operation is termed in literature as pointwise convolution. | |
| This operation often used to match dimensions. | |
| Args: | |
| in_channels (int): Number of channels in the input | |
| out_channels (int): Number of channels produced by the convolution | |
| stride (int, optional): Stride of the convolution. Default: 1 | |
| padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0 | |
| bias (bool, optional): If True, adds a learnable bias to the output. Default: True | |
| Inputs: inputs | |
| - **inputs** (batch, in_channels, time): Tensor containing input vector | |
| Returns: outputs | |
| - **outputs** (batch, out_channels, time): Tensor produces by pointwise 1-D convolution. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| stride: int = 1, | |
| padding: int = 0, | |
| bias: bool = True, | |
| ) -> None: | |
| super(PointwiseConv1d, self).__init__() | |
| self.conv = nn.Conv1d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=1, | |
| stride=stride, | |
| padding=padding, | |
| bias=bias, | |
| ) | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| return self.conv(inputs) | |
| class ConvModule(nn.Module): | |
| """ | |
| Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU). | |
| This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution | |
| to aid training deep models. | |
| Args: | |
| in_channels (int): Number of channels in the input | |
| kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31 | |
| dropout_p (float, optional): probability of dropout | |
| Inputs: inputs | |
| inputs (batch, time, dim): Tensor contains input sequences | |
| Outputs: outputs | |
| outputs (batch, time, dim): Tensor produces by conformer convolution module. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| kernel_size: int = 17, | |
| expansion_factor: int = 2, | |
| dropout_p: float = 0.1, | |
| ) -> None: | |
| super(ConvModule, self).__init__() | |
| assert (kernel_size - 1) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding" | |
| assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2" | |
| self.sequential = nn.Sequential( | |
| Transpose(shape=(1, 2)), | |
| DepthwiseConv1d(in_channels, in_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2), | |
| ) | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| return inputs + self.sequential(inputs).transpose(1, 2) | |
| class ConvModule_Dilated(nn.Module): | |
| """ | |
| Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU). | |
| This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution | |
| to aid training deep models. | |
| Args: | |
| in_channels (int): Number of channels in the input | |
| kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31 | |
| dropout_p (float, optional): probability of dropout | |
| Inputs: inputs | |
| inputs (batch, time, dim): Tensor contains input sequences | |
| Outputs: outputs | |
| outputs (batch, time, dim): Tensor produces by conformer convolution module. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| kernel_size: int = 17, | |
| expansion_factor: int = 2, | |
| dropout_p: float = 0.1, | |
| ) -> None: | |
| super(ConvModule_Gating, self).__init__() | |
| assert (kernel_size - 1) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding" | |
| assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2" | |
| self.sequential = nn.Sequential( | |
| Transpose(shape=(1, 2)), | |
| DepthwiseConv1d(in_channels, in_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2), | |
| ) | |
| def forward(self, inputs: Tensor) -> Tensor: | |
| return inputs + self.sequential(inputs).transpose(1, 2) | |
| class DilatedDenseNet(nn.Module): | |
| def __init__(self, depth=4, lorder=20, in_channels=64): | |
| super(DilatedDenseNet, self).__init__() | |
| self.depth = depth | |
| self.in_channels = in_channels | |
| self.pad = nn.ConstantPad2d((1, 1, 1, 0), value=0.) | |
| self.twidth = lorder*2-1 | |
| self.kernel_size = (self.twidth, 1) | |
| for i in range(self.depth): | |
| dil = 2 ** i | |
| pad_length = lorder + (dil - 1) * (lorder - 1) - 1 | |
| setattr(self, 'pad{}'.format(i + 1), nn.ConstantPad2d((0, 0, pad_length, pad_length), value=0.)) | |
| setattr(self, 'conv{}'.format(i + 1), | |
| nn.Conv2d(self.in_channels*(i+1), self.in_channels, kernel_size=self.kernel_size, | |
| dilation=(dil, 1), groups=self.in_channels, bias=False)) | |
| setattr(self, 'norm{}'.format(i + 1), nn.InstanceNorm2d(in_channels, affine=True)) | |
| setattr(self, 'prelu{}'.format(i + 1), nn.PReLU(self.in_channels)) | |
| def forward(self, x): | |
| x = torch.unsqueeze(x, 1) | |
| x_per = x.permute(0, 3, 2, 1) | |
| skip = x_per | |
| for i in range(self.depth): | |
| out = getattr(self, 'pad{}'.format(i + 1))(skip) | |
| out = getattr(self, 'conv{}'.format(i + 1))(out) | |
| out = getattr(self, 'norm{}'.format(i + 1))(out) | |
| out = getattr(self, 'prelu{}'.format(i + 1))(out) | |
| skip = torch.cat([out, skip], dim=1) | |
| out1 = out.permute(0, 3, 2, 1) | |
| return out1.squeeze(1) | |
| class FFConvM_Dilated(nn.Module): | |
| def __init__( | |
| self, | |
| dim_in, | |
| dim_out, | |
| norm_klass = nn.LayerNorm, | |
| dropout = 0.1 | |
| ): | |
| super().__init__() | |
| self.mdl = nn.Sequential( | |
| norm_klass(dim_in), | |
| nn.Linear(dim_in, dim_out), | |
| nn.SiLU(), | |
| DilatedDenseNet(depth=2, lorder=17, in_channels=dim_out), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward( | |
| self, | |
| x, | |
| ): | |
| output = self.mdl(x) | |
| return output | |