File size: 2,183 Bytes
91ecf5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Import necessary libraries
import streamlit as st
import openai
import os

# Set the title for the Streamlit app
st.title("Simple Chatbot")

# Load the OpenAI API key from Hugging Face's environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")

# Check if the API key is loaded
if openai_api_key is None:
    st.error("API key not found. Please set the OpenAI API key in the environment.")
    st.stop()

# Set the API key for OpenAI
openai.api_key = openai_api_key

# Define the template for the chatbot prompt
prompt_template = """
    You are a helpful Assistant who answers users' questions
    based on your general knowledge. Keep your answers short 
    and to the point.
"""

# Get the current prompt from the session state or set default
if "prompt" not in st.session_state:
    st.session_state["prompt"] = [{"role": "system", 
                                   "content": prompt_template}]
prompt = st.session_state["prompt"]

# Display previous chat messages
for message in prompt:
    if message["role"] != "system":
        with st.chat_message(message["role"]):
            st.write(message["content"])

# Get the user's question using Streamlit's chat input
question = st.chat_input("Ask anything")

# Handle the user's question
if question:
    # Add the user's question to the prompt and display it
    prompt.append({"role": "user", "content": question})
    with st.chat_message("user"):
        st.write(question)

    # Display an empty assistant message while waiting for response
    with st.chat_message("assistant"):
        botmsg = st.empty()

    # Define a function to interact with OpenAI API
    def chat_gpt(messages):
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages
        )
        return response.choices[0].message['content'].strip()

    # Call the chat_gpt function
    result = chat_gpt(prompt)

    # Display the assistant's response
    botmsg.write(result)

    # Add the assistant's response to the prompt
    prompt.append({"role": "assistant", "content": result})

    # Store the updated prompt in the session state
    st.session_state["prompt"] = prompt