Spaces:
Running
Running
File size: 10,906 Bytes
0deb5b7 305e7b1 d542354 0deb5b7 305e7b1 0deb5b7 305e7b1 0deb5b7 c0a630f 0deb5b7 305e7b1 0deb5b7 c0a630f 17772e8 c0a630f 17772e8 0deb5b7 c0a630f 0deb5b7 c0a630f 3f80be6 0deb5b7 3f80be6 c0a630f 3f80be6 0deb5b7 c0a630f 0deb5b7 c0a630f 0deb5b7 305e7b1 c0a630f 305e7b1 c0a630f 305e7b1 0deb5b7 c0a630f 0deb5b7 c0a630f 0deb5b7 305e7b1 c0a630f 0deb5b7 c0a630f 0deb5b7 305e7b1 0deb5b7 17772e8 0deb5b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import gradio as gr
import numpy as np
import pandas as pd
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
from constants import EMBEDDING_DIMENSION, LAUNCH_PARAMETERS, SUPPORTED_EMBEDDING_DIMENSIONS
from data import SAMPLE_SMILES
from service import MolecularEmbeddingService, SimilarMolecule, setup_logger
logger = setup_logger()
class App:
def __init__(self):
self.embedding_service = MolecularEmbeddingService()
self.demo = self.create_gradio_interface()
def molecule_similarity_search_pipeline(
self, smiles: str, embed_dim: int
) -> tuple[list[float], list[SimilarMolecule], str]:
"""Complete pipeline: SMILES -> Canonical SMILES -> Embedding -> Similar molecules"""
try:
if not smiles or smiles.strip() == "":
return [], [], "Please provide a valid SMILES string"
logger.info(f"Running similarity search: {smiles} - ({embed_dim})")
embedding = self.embedding_service.get_molecular_embedding(smiles, embed_dim)
neighbors = self.embedding_service.find_similar_molecules(embedding, embed_dim)
return embedding.tolist(), neighbors, "Search completed successfully"
except Exception as e:
error_msg = f"Search failed: {str(e)}"
logger.error(error_msg)
return [], [], error_msg
@staticmethod
def _truncated_attribute(obj, attr, max_len=45):
return f"{obj[attr][:max_len]}{'...' if len(obj[attr]) > max_len else ''}"
@classmethod
def _draw_molecule_grid(cls, similar: list[SimilarMolecule]) -> np.ndarray:
mols = [Chem.MolFromSmiles(m["smiles"]) for m in similar]
legends = [
f"{cls._truncated_attribute(m, 'name')}\n{m['properties']}\n"
f"{cls._truncated_attribute(m, 'smiles')}\n{m['score']:.2E}"
for m in similar
]
draw_options = rdMolDraw2D.MolDrawOptions()
draw_options.legendFontSize = 17
draw_options.legendFraction = 0.29
draw_options.drawMolsSameScale = False
img = Draw.MolsToGridImage(
mols,
legends=legends,
molsPerRow=3,
subImgSize=(250, 250),
drawOptions=draw_options,
)
return img
@staticmethod
def _display_sample_molecules(mols: pd.DataFrame):
for _, row in mols.iterrows():
with gr.Group():
gr.Textbox(
value=row["smiles"], label=f"{row['name']} ({row['properties']})", interactive=False, scale=3
)
sample_btn = gr.Button(
f"Load {row['name']}",
scale=1,
size="sm",
variant="primary",
)
sample_btn.click(
fn=None,
js=f"() => {{window.setCWSmiles('{row['smiles']}');}}",
)
@staticmethod
def clear_all():
return "", "", [], [], None, "Cleared - Draw a new molecule or enter SMILES"
def handle_search(self, smiles: str, embed_dim: int):
if not smiles.strip():
return (
[],
[],
None,
"Please draw a molecule or enter a SMILES string",
)
embedding, similar, status = self.molecule_similarity_search_pipeline(smiles, embed_dim)
img = self._draw_molecule_grid(similar)
return embedding, similar, img, status
def create_gradio_interface(self):
"""Create the Gradio interface optimized for JavaScript client usage"""
head_scripts = """
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter.css" as="style">
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter-user.css" as="style">
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter.js" as="script">
<link rel="preload" href="gradio_api/file=src/static/main.min.js" as="script">
<link rel="stylesheet" href="gradio_api/file=src/static/chemwriter/chemwriter.css">
<link rel="stylesheet" href="gradio_api/file=src/static/chemwriter/chemwriter-user.css">
<script src="gradio_api/file=src/static/chemwriter/chemwriter.js" defer></script>
<script src="gradio_api/file=src/static/main.min.js" defer></script>
"""
with gr.Blocks(
title="Chem-MRL: Molecular Similarity Search Demo",
theme=gr.themes.Soft(), # type: ignore
head=head_scripts,
) as demo:
gr.Markdown("""
# 🧪 Chem-MRL: Molecular Similarity Search Demo
Use the ChemWriter editor to draw a molecule or input a SMILES string.<br/>
The backend encodes the molecule using the Chem-MRL model to produce a vector embedding.<br/>
Similarity search is performed via an HNSW-indexed Redis vector store to retrieve closest matches.
""")
gr.HTML(
"""
The Redis database indexes <a href="https://isomerdesign.com/pihkal/home">Isomer Design's</a> molecular library.
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
<img src="https://mirrors.creativecommons.org/presskit/buttons/80x15/svg/by-nc-sa.svg" alt="License: CC BY-NC-SA 4.0"
style="display:inline; height:15px; vertical-align:middle; margin-left:4px;"/>
</a>""", # noqa: E501
padding=False,
)
gr.Markdown(
"[Model Repo](https://github.com/emapco/chem-mrl) | [Demo Repo](https://github.com/emapco/chem-mrl-demo)"
)
with gr.Tab("🔬 Molecular Search"), gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Molecule Input")
gr.HTML(
'<div id="editor" class="chemwriter" '
'data-chemwriter-ui="editor" '
'data-chemwriter-width="100%" data-chemwriter-height="450"></div>'
)
smiles_input = gr.Textbox(
label="SMILES String",
placeholder="Draw a molecule above or enter SMILES here (e.g., CCO for ethanol)",
lines=2,
elem_id="smiles_input",
show_copy_button=True,
)
mol_input = gr.Textbox(
label="Molecule Input",
interactive=False,
elem_id="mol_input",
show_copy_button=True,
visible=False,
)
canonical_smiles_output = gr.Textbox(
label="Canonical SMILES",
placeholder="Canonical representation will appear here",
lines=2,
interactive=False,
elem_id="canonical_smiles_output",
show_copy_button=True,
)
embedding_dimension = gr.Dropdown(
choices=SUPPORTED_EMBEDDING_DIMENSIONS,
value=EMBEDDING_DIMENSION,
label="Embedding Dimension",
elem_id="embedding_dimension",
)
with gr.Row():
search_btn = gr.Button(
"🔍 Search Molecule Database",
variant="primary",
elem_id="search_btn",
)
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### Search Results")
status_output = gr.Textbox(
label="Status",
interactive=False,
elem_id="status_output",
value="Ready - Draw a molecule or enter SMILES",
)
with gr.Accordion("Molecular Embedding Vector", open=False):
embedding_output = gr.JSON(
label="Molecular Embedding",
elem_id="embedding_output",
)
with gr.Accordion("Similar Molecules Response", open=False):
similar_molecules_output = gr.JSON(
label="API Response",
elem_id="similar_molecules_output",
)
molecule_image = gr.Image(label="Similar Molecules Grid", type="pil")
with gr.Tab("📊 Sample Molecules"):
gr.Markdown("""
Click any button below to load the molecule into the ChemWriter editor:
""")
with gr.Row():
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[::3])
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[1::3])
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[2::3])
# Update canonical SMILES when input changes
smiles_input.change(
fn=self.embedding_service.get_canonical_smiles,
inputs=[smiles_input],
outputs=[canonical_smiles_output],
api_name="get_canonical_smiles",
)
mol_input.change(
fn=self.embedding_service.get_smiles_from_mol_file,
inputs=[mol_input],
outputs=[smiles_input],
)
search_btn.click(
fn=self.handle_search,
inputs=[smiles_input, embedding_dimension],
outputs=[
embedding_output,
similar_molecules_output,
molecule_image,
status_output,
],
api_name="molecule_similarity_search_pipeline",
)
# Clear UI state
clear_btn.click(
fn=self.clear_all,
js="window.clearCW",
outputs=[
smiles_input,
canonical_smiles_output,
embedding_output,
similar_molecules_output,
molecule_image,
status_output,
],
)
gr.set_static_paths(paths=["src/static"])
return demo
if __name__ == "__main__":
app = App()
app.demo.launch(**LAUNCH_PARAMETERS)
|