Spaces:
Running
Running
File size: 1,205 Bytes
0deb5b7 305e7b1 0deb5b7 17772e8 0deb5b7 305e7b1 0deb5b7 17772e8 0deb5b7 305e7b1 0deb5b7 305e7b1 0deb5b7 305e7b1 0deb5b7 305e7b1 0deb5b7 1a91362 0deb5b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
# Model config
MODEL_NAME = "Derify/ChemMRL-alpha"
SUPPORTED_EMBEDDING_DIMENSIONS = [1024, 768, 512, 256, 128, 64, 32, 16]
EMBEDDING_DIMENSION = max(SUPPORTED_EMBEDDING_DIMENSIONS)
USE_HALF_PRECISION = True
# HNSW index parameters
HNSW_K = 9
HNSW_PARAMETERS = {
# Embedding vector dtype
"TYPE": "FLOAT16" if USE_HALF_PRECISION else "FLOAT32",
# Embedding vectors are normalized so COSINE and IP are equivalent
"DISTANCE_METRIC": "IP",
# Defines the initial capacity of the vector index. It helps in pre-allocating space for the index.
"INITIAL_CAP": 15400,
# Max number of outgoing edges (connections) for each node in a graph layer.
"M": 32,
# Max number of connected neighbors to consider during graph building.
# Higher values increase accuracy, but also increase index build time.
"EF_CONSTRUCTION": 512,
# Max top candidates during KNN search. Higher values increase accuracy, but also increase search latency.
"EF_RUNTIME": HNSW_K,
}
# Gradio launch parameters
LAUNCH_PARAMETERS = {
"server_name": "0.0.0.0",
"server_port": 7860,
"share": False,
"debug": False,
"show_api": False,
"pwa": True,
"mcp_server": False,
}
|