File size: 8,949 Bytes
0deb5b7
 
305e7b1
0deb5b7
 
 
 
 
17772e8
0deb5b7
 
c0a630f
0deb5b7
 
 
 
 
 
 
 
 
 
 
17772e8
0deb5b7
305e7b1
0deb5b7
 
 
 
 
 
c0a630f
0deb5b7
 
 
 
 
 
 
 
 
 
 
 
305e7b1
0deb5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17772e8
 
 
 
 
 
0deb5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305e7b1
 
 
 
 
 
 
 
 
 
 
0deb5b7
 
305e7b1
0deb5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17772e8
 
0deb5b7
17772e8
 
0deb5b7
 
 
 
 
 
 
c0a630f
0deb5b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17772e8
0deb5b7
 
 
305e7b1
0deb5b7
 
 
c0a630f
 
 
 
 
 
0deb5b7
 
305e7b1
0deb5b7
 
 
 
 
 
 
 
 
c0a630f
 
305e7b1
 
 
 
 
c0a630f
 
 
 
 
 
 
 
 
 
 
 
 
 
305e7b1
0deb5b7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import logging
import os
import time
from typing import TypedDict

import numpy as np
import pandas as pd
import redis
import torch
from chem_mrl.molecular_fingerprinter import MorganFingerprinter
from dotenv import load_dotenv
from rdkit import Chem, RDLogger
from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
from redis.commands.search.query import Query
from sentence_transformers import SentenceTransformer

from constants import (
    EMBEDDING_DIMENSION,
    HNSW_K,
    HNSW_PARAMETERS,
    MODEL_NAME,
    SUPPORTED_EMBEDDING_DIMENSIONS,
    USE_HALF_PRECISION,
)
from data import ISOMER_DESIGN_DATASET


def setup_logger(clear_handler=False):
    if clear_handler:
        for handler in logging.root.handlers[:]:
            logging.root.removeHandler(handler)  # issue with sentence-transformer's logging handler
    RDLogger.DisableLog("rdApp.*")  # type: ignore - DisableLog is an exported function
    logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
    logger = logging.getLogger(__name__)
    return logger


load_dotenv("../.env")
logger = setup_logger(clear_handler=True)


class SimilarMolecule(TypedDict):
    smiles: str
    name: str
    properties: str
    score: float


class MolecularEmbeddingService:
    def __init__(self):
        self.model_name = MODEL_NAME
        self.index_name = "molecule_embeddings"
        self.model_embed_dim = EMBEDDING_DIMENSION

        self.model = self._initialize_model()
        self.redis_client = self._initialize_redis()
        self._initialize_datastore()

    def _initialize_model(self):
        """Initialize the Hugging Face transformers model"""
        try:
            model = SentenceTransformer(
                self.model_name,
                model_kwargs={
                    "torch_dtype": torch.float16 if USE_HALF_PRECISION else torch.float32,
                },
            )
            model.eval()
            return model
        except Exception as e:
            logger.error(f"Failed to load model: {e}")
            raise

    def _initialize_redis(self):
        """Initialize Redis connection"""
        try:
            redis_host = os.getenv("REDIS_HOST", "localhost")
            redis_port = int(os.getenv("REDIS_PORT", 6379))
            redis_password = os.getenv("REDIS_PASSWORD", None)
            logger.info(
                f"Connecting to Redis at {redis_host}:{redis_port} with password: {'***' if redis_password else 'None'}"
            )
            redis_client = redis.Redis(
                host=redis_host,
                port=redis_port,
                password=redis_password,
                decode_responses=True,
            )
        except Exception as e:
            logger.error(f"Failed to connect to Redis: {e}")
            raise

        while True:
            try:
                redis_client.ping()
                break
            except redis.exceptions.BusyLoadingError:
                time_out = 5
                logger.warning(f"Redis is loading the dataset in memory. Retrying in {time_out} seconds...")
                time.sleep(time_out)

        return redis_client

    def _initialize_datastore(self):
        self.__create_hnsw_index()
        self.__populate_sample_data(ISOMER_DESIGN_DATASET)

    def __create_hnsw_index(self):
        """Create HNSW index for molecular embeddings"""
        try:
            self.redis_client.ft(self.index_name).info()
            logger.info(f"Index {self.index_name} already exists")
            return
        except redis.exceptions.ResponseError:
            pass

        try:
            schema: list[TextField | VectorField] = [
                VectorField(
                    self.embedding_field_name(dim),
                    "HNSW",
                    {
                        **HNSW_PARAMETERS,
                        "DIM": dim,
                    },
                )
                for dim in SUPPORTED_EMBEDDING_DIMENSIONS
            ]
            schema.insert(0, TextField("smiles"))

            self.redis_client.ft(self.index_name).create_index(
                schema,
                definition=IndexDefinition(prefix=[self.molecule_index_prefix("")], index_type=IndexType.HASH),
            )

            logger.info(f"Created HNSW index: {self.index_name}")

        except Exception as e:
            logger.error(f"Failed to create HNSW index: {e}")
            raise

    def __populate_sample_data(self, df: pd.DataFrame):
        """Populate Redis with sample molecular data"""
        logger.info("Populating Redis with sample molecular data...")
        for _, row in df.iterrows():
            try:
                key = self.molecule_index_prefix(row["smiles"])
                if self.redis_client.exists(key):
                    continue

                embedding_cache: np.ndarray = self.get_molecular_embedding(row["smiles"], EMBEDDING_DIMENSION)

                mapping: dict[str, bytes | str] = {
                    self.embedding_field_name(embed_dim): self._truncate_and_normalize_embedding(
                        embedding_cache.copy(), embed_dim
                    ).tobytes()
                    for embed_dim in SUPPORTED_EMBEDDING_DIMENSIONS
                }
                mapping = {**mapping, **row.to_dict()}

                self.redis_client.hset(
                    key,
                    mapping=mapping,  # type: ignore
                )

            except Exception as e:
                logger.error(f"Failed to process molecule {row}: {e}")
                continue

        logger.info(f"Populated {len(df)} sample molecules")

    def get_molecular_embedding(self, smiles: str, embed_dim: int) -> np.ndarray:
        """Generate molecular embedding using ChemMRL"""
        try:
            if embed_dim <= 0:
                raise ValueError("embed_dim must be positive")

            # Preprocess smiles similarly as training data for optimal performance
            smiles = MorganFingerprinter.canonicalize_smiles(smiles) or smiles

            embedding: np.ndarray = self.model.encode(
                [smiles],
                show_progress_bar=False,
                convert_to_numpy=True,
            )[0]

            return self._truncate_and_normalize_embedding(embedding, embed_dim)

        except Exception as e:
            logger.error(f"Failed to generate embedding for {smiles}: {e}")
            raise

    def _truncate_and_normalize_embedding(self, embedding: np.ndarray, embed_dim: int) -> np.ndarray:
        """Truncate and normalize embedding"""
        if embed_dim < len(embedding):
            embedding = embedding[:embed_dim]
        norms = np.linalg.norm(embedding, ord=2, keepdims=True)
        return embedding / np.where(norms == 0, 1, norms)

    def find_similar_molecules(
        self, query_embedding: np.ndarray, embed_dim: int, k: int = HNSW_K
    ) -> list[SimilarMolecule]:
        """Find k most similar molecules using HNSW"""
        try:
            query_vector = query_embedding.tobytes()
            query = (
                Query(f"*=>[KNN {k} @{self.embedding_field_name(embed_dim)} $vec AS score]")
                .sort_by("score")
                .return_fields("smiles", "name", "properties", "score")
                .dialect(2)
            )

            results = self.redis_client.ft(self.index_name).search(
                query,
                query_params={
                    "vec": query_vector,  # type: ignore
                },
            )

            neighbors: list[SimilarMolecule] = [
                {"smiles": doc.smiles, "name": doc.name, "properties": doc.properties, "score": float(doc.score)}
                for doc in results.docs
            ]

            return neighbors

        except Exception as e:
            logger.error(f"Failed to find similar molecules: {e}")
            return []

    @staticmethod
    def get_canonical_smiles(smiles: str | None) -> str:
        """Convert SMILES to canonical SMILES representation"""
        if not smiles or smiles.strip() == "":
            return ""

        canonical = MorganFingerprinter.canonicalize_smiles(smiles.strip())
        if canonical is None:
            return smiles.strip()
        return canonical

    @staticmethod
    def get_smiles_from_mol_file(mol_file: str) -> str:
        """Convert SMILES to canonical SMILES representation"""
        if not mol_file or mol_file.strip() == "":
            return ""

        mol = Chem.rdmolfiles.MolFromMolBlock(mol_file)
        if mol is None:
            return ""
        return Chem.MolToSmiles(mol, canonical=True)

    @staticmethod
    def embedding_field_name(dim: int) -> str:
        return f"embedding_{dim}"

    @staticmethod
    def molecule_index_prefix(smiles: str) -> str:
        return f"mol:{smiles}"