File size: 23,522 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#########################################################################

#                          /v1/fine_tuning Endpoints

# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
##########################################################################

import asyncio
from typing import Optional, cast

from fastapi import APIRouter, Depends, HTTPException, Query, Request, Response

import litellm
from litellm._logging import verbose_proxy_logger
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
from litellm.proxy.openai_files_endpoints.common_utils import (
    _is_base64_encoded_unified_file_id,
)
from litellm.proxy.utils import handle_exception_on_proxy
from litellm.types.utils import LiteLLMFineTuningJob

router = APIRouter()

from litellm.types.llms.openai import LiteLLMFineTuningJobCreate

fine_tuning_config = None


def set_fine_tuning_config(config):
    if config is None:
        return

    global fine_tuning_config
    if not isinstance(config, list):
        raise ValueError("invalid fine_tuning config, expected a list is not a list")

    for element in config:
        if isinstance(element, dict):
            for key, value in element.items():
                if isinstance(value, str) and value.startswith("os.environ/"):
                    element[key] = litellm.get_secret(value)

    fine_tuning_config = config


# Function to search for specific custom_llm_provider and return its configuration
def get_fine_tuning_provider_config(
    custom_llm_provider: str,
):
    global fine_tuning_config
    if fine_tuning_config is None:
        raise ValueError(
            "fine_tuning_config is not set, set it on your config.yaml file."
        )
    for setting in fine_tuning_config:
        if setting.get("custom_llm_provider") == custom_llm_provider:
            return setting
    return None


@router.post(
    "/v1/fine_tuning/jobs",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Create Fine-Tuning Job",
)
@router.post(
    "/fine_tuning/jobs",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Create Fine-Tuning Job",
)
async def create_fine_tuning_job(
    request: Request,
    fastapi_response: Response,
    fine_tuning_request: LiteLLMFineTuningJobCreate,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
    This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs

    Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create

    Example Curl:
    ```
    curl http://localhost:4000/v1/fine_tuning/jobs \
      -H "Content-Type: application/json" \
      -H "Authorization: Bearer sk-1234" \
      -d '{
        "model": "gpt-3.5-turbo",
        "training_file": "file-abc123",
        "hyperparameters": {
          "n_epochs": 4
        }
      }'
    ```
    """
    from litellm.proxy.proxy_server import (
        general_settings,
        llm_router,
        premium_user,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data = fine_tuning_request.model_dump(exclude_none=True)
    try:
        if premium_user is not True:
            raise ValueError(
                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
            )
        # Convert Pydantic model to dict

        verbose_proxy_logger.debug(
            "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
        )

        # Include original request and headers in the data
        base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data)
        (
            data,
            litellm_logging_obj,
        ) = await base_llm_response_processor.common_processing_pre_call_logic(
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_logging_obj=proxy_logging_obj,
            proxy_config=proxy_config,
            route_type="acreate_fine_tuning_job",
        )

        ## CHECK IF MANAGED FILE ID
        unified_file_id: Union[str, Literal[False]] = False
        training_file = fine_tuning_request.training_file
        response: Optional[LiteLLMFineTuningJob] = None
        if training_file:
            unified_file_id = _is_base64_encoded_unified_file_id(training_file)
        ## IF SO, Route based on that
        if unified_file_id:
            """ """
            if llm_router is None:
                raise HTTPException(
                    status_code=500,
                    detail={
                        "error": "LLM Router not initialized. Ensure models added to proxy."
                    },
                )

            response = cast(
                LiteLLMFineTuningJob, await llm_router.acreate_fine_tuning_job(**data)
            )
            response.training_file = unified_file_id
            response._hidden_params["unified_file_id"] = unified_file_id
        ## ELSE, Route based on custom_llm_provider
        elif fine_tuning_request.custom_llm_provider:
            # get configs for custom_llm_provider
            llm_provider_config = get_fine_tuning_provider_config(
                custom_llm_provider=fine_tuning_request.custom_llm_provider,
            )
            # add llm_provider_config to data
            if llm_provider_config is not None:
                data.update(llm_provider_config)

            response = await litellm.acreate_fine_tuning_job(**data)

        if response is None:
            raise ValueError(
                "Invalid request, No litellm managed file id or custom_llm_provider provided."
            )

        ### CALL HOOKS ### - modify outgoing data
        _response = await proxy_logging_obj.post_call_success_hook(
            data=data,
            user_api_key_dict=user_api_key_dict,
            response=response,
        )
        if _response is not None and isinstance(_response, LiteLLMFineTuningJob):
            response = _response

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )

        return response
    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
                str(e)
            )
        )
        raise handle_exception_on_proxy(e)


@router.get(
    "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
)
@router.get(
    "/fine_tuning/jobs/{fine_tuning_job_id:path}",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
)
async def retrieve_fine_tuning_job(
    request: Request,
    fastapi_response: Response,
    fine_tuning_job_id: str,
    custom_llm_provider: Optional[Literal["openai", "azure"]] = None,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Retrieves a fine-tuning job.
    This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}

    Supported Query Params:
    - `custom_llm_provider`: Name of the LiteLLM provider
    - `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve.
    """
    from litellm.proxy.proxy_server import (
        general_settings,
        llm_router,
        premium_user,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: dict = {"fine_tuning_job_id": fine_tuning_job_id}
    try:
        if premium_user is not True:
            raise ValueError(
                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
            )
        # Include original request and headers in the data
        base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data)
        (
            data,
            litellm_logging_obj,
        ) = await base_llm_response_processor.common_processing_pre_call_logic(
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_logging_obj=proxy_logging_obj,
            proxy_config=proxy_config,
            route_type=CallTypes.aretrieve_fine_tuning_job.value,
        )

        try:
            request_body = await request.json()
        except Exception:
            request_body = {}

        custom_llm_provider = request_body.get("custom_llm_provider", None)

        ## CHECK IF MANAGED FILE ID
        unified_finetuning_job_id: Union[str, Literal[False]] = False
        response: Optional[LiteLLMFineTuningJob] = None
        if fine_tuning_job_id:
            unified_finetuning_job_id = _is_base64_encoded_unified_file_id(
                fine_tuning_job_id
            )
        if unified_finetuning_job_id:
            if llm_router is None:
                raise HTTPException(
                    status_code=500,
                    detail={
                        "error": "LLM Router not initialized. Ensure models added to proxy."
                    },
                )
            response = cast(
                LiteLLMFineTuningJob,
                await llm_router.aretrieve_fine_tuning_job(
                    **data,
                ),
            )
            response._hidden_params[
                "unified_finetuning_job_id"
            ] = unified_finetuning_job_id
        elif custom_llm_provider:
            # get configs for custom_llm_provider
            llm_provider_config = get_fine_tuning_provider_config(
                custom_llm_provider=custom_llm_provider
            )

            if llm_provider_config is not None:
                data.update(llm_provider_config)

            response = await litellm.aretrieve_fine_tuning_job(
                **data,
            )

        if response is None:
            raise HTTPException(
                status_code=400,
                detail="Invalid request, No litellm managed file id or custom_llm_provider provided.",
            )

        ### CALL HOOKS ### - modify outgoing data
        _response = await proxy_logging_obj.post_call_success_hook(
            data=data,
            user_api_key_dict=user_api_key_dict,
            response=response,
        )
        if _response is not None and isinstance(_response, LiteLLMFineTuningJob):
            response = _response

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )

        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.retrieve_fine_tuning_job(): Exception occurred - {}".format(
                str(e)
            )
        )
        raise handle_exception_on_proxy(e)


@router.get(
    "/v1/fine_tuning/jobs",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) List Fine-Tuning Jobs",
)
@router.get(
    "/fine_tuning/jobs",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) List Fine-Tuning Jobs",
)
async def list_fine_tuning_jobs(
    request: Request,
    fastapi_response: Response,
    custom_llm_provider: Optional[Literal["openai", "azure"]] = None,
    target_model_names: Optional[str] = Query(
        default=None,
        description="Comma separated list of model names to filter by. Example: 'gpt-4o,gpt-4o-mini'",
    ),
    after: Optional[str] = None,
    limit: Optional[int] = None,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Lists fine-tuning jobs for the organization.
    This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs

    Supported Query Params:
    - `custom_llm_provider`: Name of the LiteLLM provider
    - `after`: Identifier for the last job from the previous pagination request.
    - `limit`: Number of fine-tuning jobs to retrieve (default is 20).
    """
    from litellm.proxy.proxy_server import (
        general_settings,
        llm_router,
        premium_user,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: dict = {}
    try:
        if premium_user is not True:
            raise ValueError(
                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
            )
        # Include original request and headers in the data
        base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data)
        (
            data,
            litellm_logging_obj,
        ) = await base_llm_response_processor.common_processing_pre_call_logic(
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_logging_obj=proxy_logging_obj,
            proxy_config=proxy_config,
            route_type=CallTypes.alist_fine_tuning_jobs.value,
        )

        response: Optional[Any] = None
        if target_model_names and isinstance(target_model_names, str):
            target_model_names_list = target_model_names.split(",")
            if len(target_model_names_list) != 1:
                raise HTTPException(
                    status_code=400,
                    detail="target_model_names on list fine-tuning jobs must be a list of one model name. Example: ['gpt-4o']",
                )
            ## Use router to list fine-tuning jobs for that model
            if llm_router is None:
                raise HTTPException(
                    status_code=500,
                    detail="LLM Router not initialized. Ensure models added to proxy.",
                )
            data["model"] = target_model_names_list[0]
            response = await llm_router.alist_fine_tuning_jobs(
                **data,
                after=after,
                limit=limit,
            )
            return response
        elif custom_llm_provider:
            # get configs for custom_llm_provider
            llm_provider_config = get_fine_tuning_provider_config(
                custom_llm_provider=custom_llm_provider
            )

            if llm_provider_config is not None:
                data.update(llm_provider_config)

            response = await litellm.alist_fine_tuning_jobs(
                **data,
                after=after,
                limit=limit,
            )
        if response is None:
            raise HTTPException(
                status_code=400,
                detail="Invalid request, No litellm managed file id or custom_llm_provider provided.",
            )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )

        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
                str(e)
            )
        )
        raise handle_exception_on_proxy(e)


@router.post(
    "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
)
@router.post(
    "/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
    dependencies=[Depends(user_api_key_auth)],
    tags=["fine-tuning"],
    summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
)
async def cancel_fine_tuning_job(
    request: Request,
    fastapi_response: Response,
    fine_tuning_job_id: str,
    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
    """
    Cancel a fine-tuning job.

    This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel

    Supported Query Params:
    - `custom_llm_provider`: Name of the LiteLLM provider
    - `fine_tuning_job_id`: The ID of the fine-tuning job to cancel.
    """
    from litellm.proxy.proxy_server import (
        general_settings,
        llm_router,
        premium_user,
        proxy_config,
        proxy_logging_obj,
        version,
    )

    data: dict = {"fine_tuning_job_id": fine_tuning_job_id}
    try:
        if premium_user is not True:
            raise ValueError(
                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
            )
        # Include original request and headers in the data
        base_llm_response_processor = ProxyBaseLLMRequestProcessing(data=data)
        (
            data,
            litellm_logging_obj,
        ) = await base_llm_response_processor.common_processing_pre_call_logic(
            request=request,
            general_settings=general_settings,
            user_api_key_dict=user_api_key_dict,
            version=version,
            proxy_logging_obj=proxy_logging_obj,
            proxy_config=proxy_config,
            route_type=CallTypes.acancel_fine_tuning_job.value,
        )

        try:
            request_body = await request.json()
        except Exception:
            request_body = {}

        custom_llm_provider = request_body.get("custom_llm_provider", None)

        ## CHECK IF MANAGED FILE ID
        unified_finetuning_job_id: Union[str, Literal[False]] = False
        response: Optional[LiteLLMFineTuningJob] = None
        if fine_tuning_job_id:
            unified_finetuning_job_id = _is_base64_encoded_unified_file_id(
                fine_tuning_job_id
            )
        if unified_finetuning_job_id:
            if llm_router is None:
                raise HTTPException(
                    status_code=500,
                    detail={
                        "error": "LLM Router not initialized. Ensure models added to proxy."
                    },
                )
            response = cast(
                LiteLLMFineTuningJob,
                await llm_router.acancel_fine_tuning_job(
                    **data,
                ),
            )
            response._hidden_params[
                "unified_finetuning_job_id"
            ] = unified_finetuning_job_id
        else:
            # get configs for custom_llm_provider
            llm_provider_config = get_fine_tuning_provider_config(
                custom_llm_provider=custom_llm_provider
            )

            if llm_provider_config is not None:
                data.update(llm_provider_config)

            response = await litellm.acancel_fine_tuning_job(
                **data,
            )

        if response is None:
            raise HTTPException(
                status_code=400,
                detail="Invalid request, No litellm managed file id or custom_llm_provider provided.",
            )

        ### CALL HOOKS ### - modify outgoing data
        _response = await proxy_logging_obj.post_call_success_hook(
            data=data,
            user_api_key_dict=user_api_key_dict,
            response=response,
        )
        if _response is not None and isinstance(_response, LiteLLMFineTuningJob):
            response = _response

        ### ALERTING ###
        asyncio.create_task(
            proxy_logging_obj.update_request_status(
                litellm_call_id=data.get("litellm_call_id", ""), status="success"
            )
        )

        ### RESPONSE HEADERS ###
        hidden_params = getattr(response, "_hidden_params", {}) or {}
        model_id = hidden_params.get("model_id", None) or ""
        cache_key = hidden_params.get("cache_key", None) or ""
        api_base = hidden_params.get("api_base", None) or ""

        fastapi_response.headers.update(
            ProxyBaseLLMRequestProcessing.get_custom_headers(
                user_api_key_dict=user_api_key_dict,
                model_id=model_id,
                cache_key=cache_key,
                api_base=api_base,
                version=version,
                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
            )
        )

        return response

    except Exception as e:
        await proxy_logging_obj.post_call_failure_hook(
            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
        )
        verbose_proxy_logger.exception(
            "litellm.proxy.proxy_server.cancel_fine_tuning_job(): Exception occurred - {}".format(
                str(e)
            )
        )
        raise handle_exception_on_proxy(e)