File size: 12,141 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
Testing for _assemble_complete_response_from_streaming_chunks

- Test 1 - ModelResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
- Test 2 - TextCompletionResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
- Test 3 - Have multiple lists of streaming chunks, Assert that chunks are added to the correct list and that complete_streaming_response is None. After final chunk sent assert complete_streaming_response is not None
- Test 4 - build a complete response when 1 chunk is poorly formatted

"""

import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock

sys.path.insert(
    0, os.path.abspath("../..")
)  # Adds the parent directory to the system path


import httpx
import pytest
from respx import MockRouter

import litellm
from litellm import (
    Choices,
    Message,
    ModelResponse,
    ModelResponseStream,
    TextCompletionResponse,
    TextChoices,
)

from litellm.litellm_core_utils.logging_utils import (
    _assemble_complete_response_from_streaming_chunks,
)


@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_1(is_async):
    """
    Test 1 - ModelResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
    """

    request_kwargs = {
        "model": "test_model",
        "messages": [{"role": "user", "content": "Hello, world!"}],
    }

    list_streaming_chunks = []
    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                delta=litellm.utils.Delta(
                    content="hello in response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)
    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks,
        is_async=is_async,
    )

    # this is the 1st chunk - complete_streaming_response should be None

    print("list_streaming_chunks", list_streaming_chunks)
    print("complete_streaming_response", complete_streaming_response)
    assert complete_streaming_response is None
    assert len(list_streaming_chunks) == 1
    assert list_streaming_chunks[0] == chunk

    # Add final chunk
    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                finish_reason="stop",
                delta=litellm.utils.Delta(
                    content="end of response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)
    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks,
        is_async=is_async,
    )

    print("list_streaming_chunks", list_streaming_chunks)
    print("complete_streaming_response", complete_streaming_response)

    # this is the 2nd chunk - complete_streaming_response should not be None
    assert complete_streaming_response is not None
    assert len(list_streaming_chunks) == 2

    assert isinstance(complete_streaming_response, ModelResponse)
    assert isinstance(complete_streaming_response.choices[0], Choices)

    pass


@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_2(is_async):
    """
    Test 2 - TextCompletionResponse with 1 list of streaming chunks. Assert chunks are added to the streaming_chunks, after final chunk sent assert complete_streaming_response is not None
    """

    from litellm.utils import TextCompletionStreamWrapper

    _text_completion_stream_wrapper = TextCompletionStreamWrapper(
        completion_stream=None, model="test_model"
    )

    request_kwargs = {
        "model": "test_model",
        "messages": [{"role": "user", "content": "Hello, world!"}],
    }

    list_streaming_chunks = []
    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                delta=litellm.utils.Delta(
                    content="hello in response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)
    chunk = _text_completion_stream_wrapper.convert_to_text_completion_object(chunk)

    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks,
        is_async=is_async,
    )

    # this is the 1st chunk - complete_streaming_response should be None

    print("list_streaming_chunks", list_streaming_chunks)
    print("complete_streaming_response", complete_streaming_response)
    assert complete_streaming_response is None
    assert len(list_streaming_chunks) == 1
    assert list_streaming_chunks[0] == chunk

    # Add final chunk
    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                finish_reason="stop",
                delta=litellm.utils.Delta(
                    content="end of response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)
    chunk = _text_completion_stream_wrapper.convert_to_text_completion_object(chunk)
    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks,
        is_async=is_async,
    )

    print("list_streaming_chunks", list_streaming_chunks)
    print("complete_streaming_response", complete_streaming_response)

    # this is the 2nd chunk - complete_streaming_response should not be None
    assert complete_streaming_response is not None
    assert len(list_streaming_chunks) == 2

    assert isinstance(complete_streaming_response, TextCompletionResponse)
    assert isinstance(complete_streaming_response.choices[0], TextChoices)

    pass


@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_3(is_async):

    request_kwargs = {
        "model": "test_model",
        "messages": [{"role": "user", "content": "Hello, world!"}],
    }

    list_streaming_chunks_1 = []
    list_streaming_chunks_2 = []

    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                delta=litellm.utils.Delta(
                    content="hello in response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)
    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks_1,
        is_async=is_async,
    )

    # this is the 1st chunk - complete_streaming_response should be None

    print("list_streaming_chunks_1", list_streaming_chunks_1)
    print("complete_streaming_response", complete_streaming_response)
    assert complete_streaming_response is None
    assert len(list_streaming_chunks_1) == 1
    assert list_streaming_chunks_1[0] == chunk
    assert len(list_streaming_chunks_2) == 0

    # now add a chunk to the 2nd list

    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks_2,
        is_async=is_async,
    )

    print("list_streaming_chunks_2", list_streaming_chunks_2)
    print("complete_streaming_response", complete_streaming_response)
    assert complete_streaming_response is None
    assert len(list_streaming_chunks_2) == 1
    assert list_streaming_chunks_2[0] == chunk
    assert len(list_streaming_chunks_1) == 1

    # now add a chunk to the 1st list


@pytest.mark.parametrize("is_async", [True, False])
def test_assemble_complete_response_from_streaming_chunks_4(is_async):
    """
    Test 4 - build a complete response when 1 chunk is poorly formatted

    - Assert complete_streaming_response is None
    - Assert list_streaming_chunks is not empty
    """

    request_kwargs = {
        "model": "test_model",
        "messages": [{"role": "user", "content": "Hello, world!"}],
    }

    list_streaming_chunks = []

    chunk = {
        "id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
        "choices": [
            litellm.utils.StreamingChoices(
                finish_reason="stop",
                delta=litellm.utils.Delta(
                    content="end of response",
                    function_call=None,
                    role=None,
                    tool_calls=None,
                ),
                index=0,
                logprobs=None,
            )
        ],
        "created": 1721353246,
        "model": "gpt-3.5-turbo",
        "object": "chat.completion.chunk",
        "system_fingerprint": None,
        "usage": None,
    }
    chunk = ModelResponseStream(**chunk)

    # remove attribute id from chunk
    del chunk.object

    complete_streaming_response = _assemble_complete_response_from_streaming_chunks(
        result=chunk,
        start_time=datetime.now(),
        end_time=datetime.now(),
        request_kwargs=request_kwargs,
        streaming_chunks=list_streaming_chunks,
        is_async=is_async,
    )

    print("complete_streaming_response", complete_streaming_response)
    assert complete_streaming_response is None

    print("list_streaming_chunks", list_streaming_chunks)

    assert len(list_streaming_chunks) == 1