File size: 1,053 Bytes
39cc8a5
823c760
9797205
 
a5b1f33
5c8939c
97917f4
7d3a416
9797205
7d3a416
39cc8a5
 
 
 
 
 
a5b1f33
c6cb00e
65f1222
9797205
 
 
 
 
 
97917f4
 
9797205
 
 
 
 
 
97917f4
 
 
8a5a310
 
823c760
73fcf85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from fastapi import FastAPI
import uvicorn
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name = "TheBloke/Guanaco-7B-Uncensored-AWQ"

model = AutoAWQForCausalLM.from_quantized(model_name, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)

app = FastAPI()

@app.get("/")
def greet_json():
    return {"Hello": "World!"}

@app.get("/message")
async def message(input: str):
    prompt=f'''### Human: {input}
    ### Assistant:
    
    '''
    
    inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).input_ids.cpu()
    
    output = model.generate(
        inputs,
        do_sample=True,
        temperature=0.7,
        top_p=0.95,
        top_k=40,
        max_new_tokens=512
    )
    
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    
    return response

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)