File size: 1,209 Bytes
39cc8a5
51e3565
823c760
a5b1f33
51e3565
 
 
 
 
 
 
 
afc73c8
51e3565
 
 
 
 
 
afc73c8
51e3565
 
39cc8a5
 
 
 
 
 
a5b1f33
c6cb00e
65f1222
 
9481fa2
823c760
 
73fcf85
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import uvicorn

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,          # Enable 4-bit quantization
    bnb_4bit_quant_type="nf4",  # Use normalized float 4 
    bnb_4bit_compute_dtype="float16",  # Faster computations
    bnb_4bit_use_double_quant=True  # Extra compression
)

model = AutoModelForCausalLM.from_pretrained(
    "TheBloke/Wizard-Vicuna-13B-Uncensored-SuperHOT-8K-GPTQ",
    quantization_config=bnb_config,
    device_map="auto",  # Auto-distribute across CPU/GPU
    trust_remote_code=True  # Required for Qwen!
)

tokenizer = AutoTokenizer.from_pretrained(
    "TheBloke/Wizard-Vicuna-13B-Uncensored-SuperHOT-8K-GPTQ",
    trust_remote_code=True
)

app = FastAPI()

@app.get("/")
def greet_json():
    return {"Hello": "World!"}

@app.get("/message")
async def message(input: str):
    inputs = tokenizer(input, return_tensors="pt", padding=True, truncation=True)
    output = model.generate(**inputs, max_length=50, temperature=0.3)
    return tokenizer.decode(output[0], skip_special_tokens=True)

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)