test / app.py
DesiredName's picture
Update app.py
e53d910 verified
raw
history blame
1.62 kB
from transformers import AutoTokenizer
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Config,
ExLlamaV2Cache,
ExLlamaV2Tokenizer
)
from exllamav2.generator import (
ExLlamaV2StreamingGenerator,
ExLlamaV2Sampler
)
import torch
# Configure model
model_dir = "TheBloke_Wizard-Vicuna-13B-GPTQ" # Path to downloaded model
config = ExLlamaV2Config()
config.model_dir = model_dir
config.prepare()
# Load model
model = ExLlamaV2(config)
cache = ExLlamaV2Cache(model)
model.load_autosplit(cache)
# Load tokenizer (HF-compatible)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
def generate_response(prompt, max_tokens=200, temperature=0.7):
# Initialize generator
generator = ExLlamaV2StreamingGenerator(model, cache, tokenizer)
generator.set_stop_conditions([tokenizer.eos_token_id])
# Configure sampler
settings = ExLlamaV2Sampler.Settings()
settings.temperature = temperature
settings.top_k = 50
settings.top_p = 0.8
# Encode prompt
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
# Generate
output = generator.generate_simple(
input_ids,
settings,
max_tokens,
seed=42
)
return tokenizer.decode(output[0], skip_special_tokens=True)
##############################################
from fastapi import FastAPI
import uvicorn
app = FastAPI()
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.get("/message")
async def message(input: str):
return generate_response(input)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)