Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,65 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import uvicorn
|
3 |
-
from transformers import AutoModel, AutoTokenizer
|
4 |
|
5 |
-
model_name = "Tap-M/Luna-AI-Llama2-Uncensored"
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
|
13 |
-
#
|
14 |
-
tokenizer =
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
app = FastAPI()
|
18 |
|
@@ -22,19 +69,7 @@ def greet_json():
|
|
22 |
|
23 |
@app.get("/message")
|
24 |
async def message(input: str):
|
25 |
-
|
26 |
-
|
27 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
28 |
-
|
29 |
-
output = model.generate(
|
30 |
-
input_ids=inputs["input_ids"],
|
31 |
-
attention_mask=inputs["attention_mask"],
|
32 |
-
max_new_tokens=100,
|
33 |
-
)
|
34 |
-
|
35 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
36 |
-
|
37 |
-
return response
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import uvicorn
|
|
|
3 |
|
4 |
+
#model_name = "Tap-M/Luna-AI-Llama2-Uncensored"
|
5 |
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Configuration for 4-bit quantization
|
10 |
+
bnb_config = BitsAndBytesConfig(
|
11 |
+
load_in_4bit=True,
|
12 |
+
bnb_4bit_quant_type="nf4", # Optimized 4-bit precision
|
13 |
+
bnb_4bit_compute_dtype=torch.float16, # Faster computations
|
14 |
+
bnb_4bit_use_double_quant=True # Extra memory savings
|
15 |
+
)
|
16 |
+
|
17 |
+
# Load model and tokenizer
|
18 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # or "13b-chat-hf"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_name,
|
22 |
+
quantization_config=bnb_config,
|
23 |
+
device_map="auto", # Auto-distribute across GPU/CPU
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
trust_remote_code=True # Required for Llama 2
|
26 |
)
|
27 |
|
28 |
+
# Set chat template (critical for chat models)
|
29 |
+
tokenizer.chat_template = "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content + ' ' + eos_token }}{% endif %}{% endfor %}"
|
30 |
+
|
31 |
+
def llama2_chat(prompt, system_prompt="You are a helpful assistant."):
|
32 |
+
# Format as Llama 2 chat
|
33 |
+
messages = [
|
34 |
+
{"role": "system", "content": system_prompt},
|
35 |
+
{"role": "user", "content": prompt}
|
36 |
+
]
|
37 |
+
|
38 |
+
# Tokenize with chat template
|
39 |
+
inputs = tokenizer.apply_chat_template(
|
40 |
+
messages,
|
41 |
+
return_tensors="pt"
|
42 |
+
).to(model.device)
|
43 |
+
|
44 |
+
# Stream output tokens
|
45 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
46 |
+
|
47 |
+
# Generate response
|
48 |
+
outputs = model.generate(
|
49 |
+
inputs,
|
50 |
+
max_new_tokens=1000,
|
51 |
+
temperature=0.7,
|
52 |
+
streamer=streamer
|
53 |
+
)
|
54 |
+
|
55 |
+
# Decode full output
|
56 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
|
64 |
app = FastAPI()
|
65 |
|
|
|
69 |
|
70 |
@app.get("/message")
|
71 |
async def message(input: str):
|
72 |
+
return llama2_chat(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|