import time from fastapi import FastAPI, File from faster_whisper import WhisperModel from utils import ffmpeg_read, stt from sentence_transformers import SentenceTransformer, util import torch app = FastAPI() whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"] audio_model = WhisperModel("base", compute_type="int8", device="cpu") text_model = SentenceTransformer('all-MiniLM-L6-v2') corpus_embeddings = torch.load('corpus_embeddings.pt') def speech_to_text(upload_audio, model_type="whisper"): """ Transcribe audio using whisper model. """ audio_path = ffmpeg_read(upload_audio, sampling_rate=16000) # Transcribe audio if model_type == "whisper": transcribe_options = dict(task="transcribe", language="ja", beam_size=5, best_of=5, vad_filter=True) segments_raw, info = audio_model.transcribe(audio_path, **transcribe_options) segments = [segment.text for segment in segments_raw] return ' '.join(segments) else: text = stt(audio_path) return text @app.get("/") def read_root(): return {"Message": "Application startup complete"} @app.post("/voice_detect/") async def voice_detect_api( voice_input: bytes = File(None), threshold: float = 0.8, model_type: str = "whisper" ): """ API to detect voice from audio file. """ start = time.time() text = speech_to_text(voice_input, model_type) query_embedding = text_model.encode(text, convert_to_tensor=True) hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=1)[0] if hits[0]['score'] > threshold: similar = 1 else: similar = 0 end = time.time() return {"text": text, "similar": similar, "time_taken": end - start}