File size: 12,816 Bytes
7547e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python3
"""
Validation script to compare optimized vs original mapper output
Compares the following columns: ๅ‡บๅŠ›_็ง‘็›ฎ, ๅ‡บๅŠ›_ไธญ็ง‘็›ฎ, ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ็งฐ, ๅ‡บๅŠ›_้ …็›ฎๅ, ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ˜ไฝ
"""

import pandas as pd
import numpy as np
from typing import List, Dict, Tuple
import os
import sys
from datetime import datetime

# Add the meisai-check-ai directory to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'meisai-check-ai'))

class OptimizationValidator:
    def __init__(self, original_file_path: str):
        """
        Initialize validator with original output file
        
        Args:
            original_file_path: Path to outputData_original.csv
        """
        self.original_file_path = original_file_path
        self.comparison_columns = [
            'ๅ‡บๅŠ›_็ง‘็›ฎ', 
            'ๅ‡บๅŠ›_ไธญ็ง‘็›ฎ', 
            'ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ็งฐ', 
            'ๅ‡บๅŠ›_้ …็›ฎๅ', 
            'ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ˜ไฝ'
        ]
        
    def load_original_data(self) -> pd.DataFrame:
        """Load original output data"""
        try:
            df_original = pd.read_csv(self.original_file_path)
            print(f"โœ“ Loaded original data: {len(df_original)} rows")
            return df_original
        except Exception as e:
            print(f"โœ— Error loading original data: {e}")
            raise
    
    def compare_dataframes(self, df_original: pd.DataFrame, df_optimized: pd.DataFrame) -> Dict:
        """
        Compare original vs optimized dataframes
        
        Returns:
            Dict with comparison results
        """
        results = {
            'total_rows': len(df_original),
            'columns_compared': self.comparison_columns,
            'differences': {},
            'summary': {}
        }
        
        # Check if dataframes have same length
        if len(df_original) != len(df_optimized):
            results['length_mismatch'] = {
                'original': len(df_original),
                'optimized': len(df_optimized)
            }
            print(f"โš  Warning: Different number of rows - Original: {len(df_original)}, Optimized: {len(df_optimized)}")
        
        # Compare each column
        for col in self.comparison_columns:
            if col not in df_original.columns:
                results['differences'][col] = f"Column not found in original data"
                continue
                
            if col not in df_optimized.columns:
                results['differences'][col] = f"Column not found in optimized data"
                continue
            
            # Fill NaN values with empty string for comparison
            original_values = df_original[col].fillna('')
            optimized_values = df_optimized[col].fillna('')
            
            # Compare values
            differences = original_values != optimized_values
            diff_count = differences.sum()
            
            results['differences'][col] = {
                'total_differences': int(diff_count),
                'accuracy_percentage': round((1 - diff_count / len(df_original)) * 100, 2),
                'different_indices': differences[differences].index.tolist()[:10]  # Show first 10 different indices
            }
            
            if diff_count > 0:
                print(f"โš  {col}: {diff_count} differences ({results['differences'][col]['accuracy_percentage']}% accuracy)")
            else:
                print(f"โœ“ {col}: Perfect match (100% accuracy)")
        
        # Overall summary
        total_differences = sum([results['differences'][col]['total_differences'] 
                               for col in self.comparison_columns 
                               if isinstance(results['differences'][col], dict)])
        
        overall_accuracy = round((1 - total_differences / (len(df_original) * len(self.comparison_columns))) * 100, 2)
        
        results['summary'] = {
            'total_differences': total_differences,
            'overall_accuracy': overall_accuracy,
            'perfect_match': total_differences == 0
        }
        
        return results
    
    def generate_difference_report(self, df_original: pd.DataFrame, df_optimized: pd.DataFrame, 
                                 output_file: str = None) -> str:
        """
        Generate detailed difference report
        
        Args:
            df_original: Original dataframe
            df_optimized: Optimized dataframe
            output_file: Optional output file path
            
        Returns:
            Report string
        """
        report_lines = []
        report_lines.append("=" * 80)
        report_lines.append(f"OPTIMIZATION VALIDATION REPORT")
        report_lines.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        report_lines.append("=" * 80)
        
        # Basic info
        report_lines.append(f"Original data rows: {len(df_original)}")
        report_lines.append(f"Optimized data rows: {len(df_optimized)}")
        report_lines.append(f"Columns compared: {', '.join(self.comparison_columns)}")
        report_lines.append("")
        
        # Compare each column
        for col in self.comparison_columns:
            if col not in df_original.columns or col not in df_optimized.columns:
                report_lines.append(f"โŒ {col}: Column missing")
                continue
                
            original_values = df_original[col].fillna('')
            optimized_values = df_optimized[col].fillna('')
            
            differences = original_values != optimized_values
            diff_count = differences.sum()
            accuracy = round((1 - diff_count / len(df_original)) * 100, 2)
            
            status = "โœ…" if diff_count == 0 else "โš ๏ธ"
            report_lines.append(f"{status} {col}: {diff_count} differences ({accuracy}% accuracy)")
            
            if diff_count > 0:
                # Show some examples of differences
                diff_indices = differences[differences].index[:5]
                report_lines.append(f"   Sample differences (first 5):")
                for idx in diff_indices:
                    orig_val = str(original_values.iloc[idx])[:50]
                    opt_val = str(optimized_values.iloc[idx])[:50]
                    report_lines.append(f"   Row {idx}: '{orig_val}' โ†’ '{opt_val}'")
                report_lines.append("")
        
        # Overall summary
        total_comparisons = len(df_original) * len(self.comparison_columns)
        total_differences = sum([
            (df_original[col].fillna('') != df_optimized[col].fillna('')).sum()
            for col in self.comparison_columns
            if col in df_original.columns and col in df_optimized.columns
        ])
        
        overall_accuracy = round((1 - total_differences / total_comparisons) * 100, 2)
        
        report_lines.append("=" * 80)
        report_lines.append(f"OVERALL RESULTS:")
        report_lines.append(f"Total differences: {total_differences}")
        report_lines.append(f"Overall accuracy: {overall_accuracy}%")
        report_lines.append(f"Perfect match: {'Yes' if total_differences == 0 else 'No'}")
        report_lines.append("=" * 80)
        
        report_text = "\n".join(report_lines)
        
        if output_file:
            with open(output_file, 'w', encoding='utf-8') as f:
                f.write(report_text)
            print(f"๐Ÿ“„ Report saved to: {output_file}")
        
        return report_text
    
    def validate_optimization(self, optimized_mapper_function, input_data: pd.DataFrame, 
                            report_file: str = None) -> bool:
        """
        Run full validation process
        
        Args:
            optimized_mapper_function: Function that takes input_data and returns optimized output
            input_data: Input dataframe to process
            report_file: Optional report file path
            
        Returns:
            True if validation passes (100% accuracy)
        """
        print("๐Ÿ” Starting optimization validation...")
        
        # Load original data
        df_original = self.load_original_data()
        
        # Run optimized mapper
        print("๐Ÿš€ Running optimized mapper...")
        try:
            df_optimized = optimized_mapper_function(input_data)
            print(f"โœ“ Optimized processing completed: {len(df_optimized)} rows")
        except Exception as e:
            print(f"โœ— Error in optimized processing: {e}")
            return False
        
        # Compare results
        print("๐Ÿ“Š Comparing results...")
        results = self.compare_dataframes(df_original, df_optimized)
        
        # Generate report
        if report_file:
            self.generate_difference_report(df_original, df_optimized, report_file)
        
        # Print summary
        print("\n" + "="*50)
        print("๐ŸŽฏ VALIDATION SUMMARY")
        print("="*50)
        print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
        print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
        print(f"Total differences: {results['summary']['total_differences']}")
        
        return results['summary']['perfect_match']

    def compare_two_files(self, optimized_file_path: str, report_file: str = None) -> bool:
        """
        Compare two CSV files directly
        
        Args:
            optimized_file_path: Path to optimized output CSV
            report_file: Optional report file path
            
        Returns:
            True if validation passes (100% accuracy)
        """
        print("๐Ÿ” Starting file comparison validation...")
        
        # Load original data
        df_original = self.load_original_data()
        
        # Load optimized data
        try:
            df_optimized = pd.read_csv(optimized_file_path)
            print(f"โœ“ Loaded optimized data: {len(df_optimized)} rows")
        except Exception as e:
            print(f"โœ— Error loading optimized data: {e}")
            return False
        
        # Compare results
        print("๐Ÿ“Š Comparing results...")
        results = self.compare_dataframes(df_original, df_optimized)
        
        # Generate report
        if report_file:
            self.generate_difference_report(df_original, df_optimized, report_file)
        
        # Print summary
        print("\n" + "="*50)
        print("๐ŸŽฏ VALIDATION SUMMARY")
        print("="*50)
        print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
        print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
        print(f"Total differences: {results['summary']['total_differences']}")
        
        return results['summary']['perfect_match']

def main():
    """Example usage"""
    # Example paths - update these according to your setup
    original_file = "data/outputData_original.csv"
    input_file = "data/outputData_api.csv"
    
    if not os.path.exists(original_file):
        print(f"โŒ Original file not found: {original_file}")
        print("Please ensure outputData_original.csv exists in the current directory")
        return
    
    # Initialize validator
    validator = OptimizationValidator(original_file)
    
    # Example of how to use with your mapper
    def example_optimized_mapper(input_data):
        # This is where you would call your optimized mapper
        # For now, return a copy of input_data as example
        df_result = input_data.copy()
        
        # Add expected output columns with dummy data for demo
        df_result['ๅ‡บๅŠ›_็ง‘็›ฎ'] = df_result.get('็ง‘็›ฎ', '')
        df_result['ๅ‡บๅŠ›_ไธญ็ง‘็›ฎ'] = df_result.get('ไธญ็ง‘็›ฎ', '')
        df_result['ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ็งฐ'] = df_result.get('ๅ็งฐ', '')
        df_result['ๅ‡บๅŠ›_้ …็›ฎๅ'] = df_result.get('ๅ็งฐ', '')
        df_result['ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ˜ไฝ'] = df_result.get('ๅ˜ไฝ', '')
        
        return df_result
    
    # Load input data
    if os.path.exists(input_file):
        input_data = pd.read_csv(input_file)
        
        # Run validation
        is_valid = validator.validate_optimization(
            example_optimized_mapper, 
            input_data, 
            "optimization_validation_report.txt"
        )
        
        if is_valid:
            print("๐ŸŽ‰ Validation PASSED! Optimization maintains accuracy.")
        else:
            print("โŒ Validation FAILED! Check the report for details.")
    else:
        print(f"โŒ Input file not found: {input_file}")
        print("You can also compare two CSV files directly:")
        print("validator.compare_two_files('optimized_output.csv', 'report.txt')")

if __name__ == "__main__":
    main()