Spaces:
Running
Running
File size: 12,816 Bytes
7547e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
#!/usr/bin/env python3
"""
Validation script to compare optimized vs original mapper output
Compares the following columns: ๅบๅ_็ง็ฎ, ๅบๅ_ไธญ็ง็ฎ, ๅบๅ_ๆจๆบๅ็งฐ, ๅบๅ_้
็ฎๅ, ๅบๅ_ๆจๆบๅไฝ
"""
import pandas as pd
import numpy as np
from typing import List, Dict, Tuple
import os
import sys
from datetime import datetime
# Add the meisai-check-ai directory to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'meisai-check-ai'))
class OptimizationValidator:
def __init__(self, original_file_path: str):
"""
Initialize validator with original output file
Args:
original_file_path: Path to outputData_original.csv
"""
self.original_file_path = original_file_path
self.comparison_columns = [
'ๅบๅ_็ง็ฎ',
'ๅบๅ_ไธญ็ง็ฎ',
'ๅบๅ_ๆจๆบๅ็งฐ',
'ๅบๅ_้
็ฎๅ',
'ๅบๅ_ๆจๆบๅไฝ'
]
def load_original_data(self) -> pd.DataFrame:
"""Load original output data"""
try:
df_original = pd.read_csv(self.original_file_path)
print(f"โ Loaded original data: {len(df_original)} rows")
return df_original
except Exception as e:
print(f"โ Error loading original data: {e}")
raise
def compare_dataframes(self, df_original: pd.DataFrame, df_optimized: pd.DataFrame) -> Dict:
"""
Compare original vs optimized dataframes
Returns:
Dict with comparison results
"""
results = {
'total_rows': len(df_original),
'columns_compared': self.comparison_columns,
'differences': {},
'summary': {}
}
# Check if dataframes have same length
if len(df_original) != len(df_optimized):
results['length_mismatch'] = {
'original': len(df_original),
'optimized': len(df_optimized)
}
print(f"โ Warning: Different number of rows - Original: {len(df_original)}, Optimized: {len(df_optimized)}")
# Compare each column
for col in self.comparison_columns:
if col not in df_original.columns:
results['differences'][col] = f"Column not found in original data"
continue
if col not in df_optimized.columns:
results['differences'][col] = f"Column not found in optimized data"
continue
# Fill NaN values with empty string for comparison
original_values = df_original[col].fillna('')
optimized_values = df_optimized[col].fillna('')
# Compare values
differences = original_values != optimized_values
diff_count = differences.sum()
results['differences'][col] = {
'total_differences': int(diff_count),
'accuracy_percentage': round((1 - diff_count / len(df_original)) * 100, 2),
'different_indices': differences[differences].index.tolist()[:10] # Show first 10 different indices
}
if diff_count > 0:
print(f"โ {col}: {diff_count} differences ({results['differences'][col]['accuracy_percentage']}% accuracy)")
else:
print(f"โ {col}: Perfect match (100% accuracy)")
# Overall summary
total_differences = sum([results['differences'][col]['total_differences']
for col in self.comparison_columns
if isinstance(results['differences'][col], dict)])
overall_accuracy = round((1 - total_differences / (len(df_original) * len(self.comparison_columns))) * 100, 2)
results['summary'] = {
'total_differences': total_differences,
'overall_accuracy': overall_accuracy,
'perfect_match': total_differences == 0
}
return results
def generate_difference_report(self, df_original: pd.DataFrame, df_optimized: pd.DataFrame,
output_file: str = None) -> str:
"""
Generate detailed difference report
Args:
df_original: Original dataframe
df_optimized: Optimized dataframe
output_file: Optional output file path
Returns:
Report string
"""
report_lines = []
report_lines.append("=" * 80)
report_lines.append(f"OPTIMIZATION VALIDATION REPORT")
report_lines.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
report_lines.append("=" * 80)
# Basic info
report_lines.append(f"Original data rows: {len(df_original)}")
report_lines.append(f"Optimized data rows: {len(df_optimized)}")
report_lines.append(f"Columns compared: {', '.join(self.comparison_columns)}")
report_lines.append("")
# Compare each column
for col in self.comparison_columns:
if col not in df_original.columns or col not in df_optimized.columns:
report_lines.append(f"โ {col}: Column missing")
continue
original_values = df_original[col].fillna('')
optimized_values = df_optimized[col].fillna('')
differences = original_values != optimized_values
diff_count = differences.sum()
accuracy = round((1 - diff_count / len(df_original)) * 100, 2)
status = "โ
" if diff_count == 0 else "โ ๏ธ"
report_lines.append(f"{status} {col}: {diff_count} differences ({accuracy}% accuracy)")
if diff_count > 0:
# Show some examples of differences
diff_indices = differences[differences].index[:5]
report_lines.append(f" Sample differences (first 5):")
for idx in diff_indices:
orig_val = str(original_values.iloc[idx])[:50]
opt_val = str(optimized_values.iloc[idx])[:50]
report_lines.append(f" Row {idx}: '{orig_val}' โ '{opt_val}'")
report_lines.append("")
# Overall summary
total_comparisons = len(df_original) * len(self.comparison_columns)
total_differences = sum([
(df_original[col].fillna('') != df_optimized[col].fillna('')).sum()
for col in self.comparison_columns
if col in df_original.columns and col in df_optimized.columns
])
overall_accuracy = round((1 - total_differences / total_comparisons) * 100, 2)
report_lines.append("=" * 80)
report_lines.append(f"OVERALL RESULTS:")
report_lines.append(f"Total differences: {total_differences}")
report_lines.append(f"Overall accuracy: {overall_accuracy}%")
report_lines.append(f"Perfect match: {'Yes' if total_differences == 0 else 'No'}")
report_lines.append("=" * 80)
report_text = "\n".join(report_lines)
if output_file:
with open(output_file, 'w', encoding='utf-8') as f:
f.write(report_text)
print(f"๐ Report saved to: {output_file}")
return report_text
def validate_optimization(self, optimized_mapper_function, input_data: pd.DataFrame,
report_file: str = None) -> bool:
"""
Run full validation process
Args:
optimized_mapper_function: Function that takes input_data and returns optimized output
input_data: Input dataframe to process
report_file: Optional report file path
Returns:
True if validation passes (100% accuracy)
"""
print("๐ Starting optimization validation...")
# Load original data
df_original = self.load_original_data()
# Run optimized mapper
print("๐ Running optimized mapper...")
try:
df_optimized = optimized_mapper_function(input_data)
print(f"โ Optimized processing completed: {len(df_optimized)} rows")
except Exception as e:
print(f"โ Error in optimized processing: {e}")
return False
# Compare results
print("๐ Comparing results...")
results = self.compare_dataframes(df_original, df_optimized)
# Generate report
if report_file:
self.generate_difference_report(df_original, df_optimized, report_file)
# Print summary
print("\n" + "="*50)
print("๐ฏ VALIDATION SUMMARY")
print("="*50)
print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
print(f"Total differences: {results['summary']['total_differences']}")
return results['summary']['perfect_match']
def compare_two_files(self, optimized_file_path: str, report_file: str = None) -> bool:
"""
Compare two CSV files directly
Args:
optimized_file_path: Path to optimized output CSV
report_file: Optional report file path
Returns:
True if validation passes (100% accuracy)
"""
print("๐ Starting file comparison validation...")
# Load original data
df_original = self.load_original_data()
# Load optimized data
try:
df_optimized = pd.read_csv(optimized_file_path)
print(f"โ Loaded optimized data: {len(df_optimized)} rows")
except Exception as e:
print(f"โ Error loading optimized data: {e}")
return False
# Compare results
print("๐ Comparing results...")
results = self.compare_dataframes(df_original, df_optimized)
# Generate report
if report_file:
self.generate_difference_report(df_original, df_optimized, report_file)
# Print summary
print("\n" + "="*50)
print("๐ฏ VALIDATION SUMMARY")
print("="*50)
print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
print(f"Total differences: {results['summary']['total_differences']}")
return results['summary']['perfect_match']
def main():
"""Example usage"""
# Example paths - update these according to your setup
original_file = "data/outputData_original.csv"
input_file = "data/outputData_api.csv"
if not os.path.exists(original_file):
print(f"โ Original file not found: {original_file}")
print("Please ensure outputData_original.csv exists in the current directory")
return
# Initialize validator
validator = OptimizationValidator(original_file)
# Example of how to use with your mapper
def example_optimized_mapper(input_data):
# This is where you would call your optimized mapper
# For now, return a copy of input_data as example
df_result = input_data.copy()
# Add expected output columns with dummy data for demo
df_result['ๅบๅ_็ง็ฎ'] = df_result.get('็ง็ฎ', '')
df_result['ๅบๅ_ไธญ็ง็ฎ'] = df_result.get('ไธญ็ง็ฎ', '')
df_result['ๅบๅ_ๆจๆบๅ็งฐ'] = df_result.get('ๅ็งฐ', '')
df_result['ๅบๅ_้
็ฎๅ'] = df_result.get('ๅ็งฐ', '')
df_result['ๅบๅ_ๆจๆบๅไฝ'] = df_result.get('ๅไฝ', '')
return df_result
# Load input data
if os.path.exists(input_file):
input_data = pd.read_csv(input_file)
# Run validation
is_valid = validator.validate_optimization(
example_optimized_mapper,
input_data,
"optimization_validation_report.txt"
)
if is_valid:
print("๐ Validation PASSED! Optimization maintains accuracy.")
else:
print("โ Validation FAILED! Check the report for details.")
else:
print(f"โ Input file not found: {input_file}")
print("You can also compare two CSV files directly:")
print("validator.compare_two_files('optimized_output.csv', 'report.txt')")
if __name__ == "__main__":
main() |