Spaces:
Running
Running
File size: 22,843 Bytes
b77c0a2 b26c508 b77c0a2 8600f2c b77c0a2 6830bc7 b77c0a2 b26c508 dfb55d0 b26c508 3020335 ec235f7 b26c508 b77c0a2 8600f2c b77c0a2 460e51f b77c0a2 6830bc7 b77c0a2 460e51f b77c0a2 6830bc7 b77c0a2 b26c508 b6b3214 b26c508 887cb19 b26c508 892f887 b26c508 892f887 b26c508 892f887 b26c508 632ec54 b26c508 632ec54 b26c508 632ec54 b26c508 887cb19 b26c508 887cb19 b26c508 887cb19 b26c508 dfb55d0 b26c508 dfb55d0 b26c508 887cb19 dfb55d0 887cb19 b77c0a2 b26c508 0477818 aeda459 0477818 aeda459 0477818 aeda459 0477818 aeda459 0477818 b26c508 0477818 b26c508 0477818 b26c508 3020335 b26c508 ec235f7 b26c508 7fff61c b26c508 7fff61c ec235f7 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 b77c0a2 b26c508 b6b3214 b26c508 b77c0a2 8600f2c 6830bc7 8600f2c 6830bc7 8600f2c 892f887 8600f2c 892f887 8600f2c 6830bc7 8600f2c 6830bc7 8600f2c b26c508 8600f2c b26c508 8600f2c b26c508 8600f2c b26c508 8600f2c b26c508 aeac4b2 b26c508 aeac4b2 b26c508 aeac4b2 b26c508 aeac4b2 b26c508 aeac4b2 b26c508 8600f2c b26c508 3020335 b26c508 8600f2c 3020335 8600f2c 460e51f b26c508 aeac4b2 b26c508 8600f2c b26c508 8600f2c aeac4b2 b26c508 8600f2c b26c508 8600f2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import os
import time
import shutil
import pandas as pd
import traceback
import sys
from pathlib import Path
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends, Body
from fastapi.responses import FileResponse
from custom_auth import get_current_user_from_token
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
# Add the path to import modules from meisai-check-ai
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "meisai-check-ai"))
from mapping_lib.standard_subject_data_mapper import StandardSubjectDataMapper
from mapping_lib.subject_similarity_mapper import SubjectSimilarityMapper
from mapping_lib.sub_subject_similarity_mapper import SubSubjectSimilarityMapper
from mapping_lib.name_similarity_mapper import NameSimilarityMapper
from mapping_lib.sub_subject_and_name_data_mapper import SubSubjectAndNameDataMapper
from mapping_lib.abstract_similarity_mapper import AbstractSimilarityMapper
from mapping_lib.name_and_abstract_mapper import NameAndAbstractDataMapper
from mapping_lib.unit_similarity_mapper import UnitSimilarityMapper
from mapping_lib.standard_name_mapper import StandardNameMapper
from config import UPLOAD_DIR, OUTPUT_DIR
from models import (
EmbeddingRequest,
PredictRawRequest,
PredictRawResponse,
PredictRecord,
PredictResult,
)
router = APIRouter()
@router.post("/predict")
async def predict(
current_user=Depends(get_current_user_from_token),
file: UploadFile = File(...),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Process an input CSV file and return standardized names (requires authentication)
"""
if not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Only CSV files are supported")
# Save uploaded file
timestamp = int(time.time())
input_file_path = os.path.join(UPLOAD_DIR, f"input_{timestamp}_{current_user.username}.csv")
output_file_path = os.path.join(OUTPUT_DIR, f"output_{timestamp}_{current_user.username}.csv")
try:
with open(input_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
finally:
file.file.close()
try:
# Load input data
start_time = time.time()
df_input_data = pd.read_csv(input_file_path)
# Ensure basic columns exist with default values
basic_columns = {
"シート名": "",
"行": "",
"科目": "",
"中科目": "",
"分類": "",
"名称": "",
"単位": "",
"摘要": "",
"備考": "",
}
for col, default_value in basic_columns.items():
if col not in df_input_data.columns:
df_input_data[col] = default_value
# Process data using the new mapping system similar to predict.py
try:
# Subject mapping
if sentence_service.df_subject_map_data is not None:
subject_similarity_mapper = SubjectSimilarityMapper(
cached_embedding_helper=sentence_service.subject_cached_embedding_helper,
df_map_data=sentence_service.df_subject_map_data,
)
list_input_subject = df_input_data["科目"].unique()
df_subject_data = pd.DataFrame({"科目": list_input_subject})
subject_similarity_mapper.predict_input(df_input_data=df_subject_data)
output_subject_map = dict(
zip(df_subject_data["科目"], df_subject_data["出力_科目"])
)
df_input_data["標準科目"] = df_input_data["科目"].map(
output_subject_map
)
df_input_data["出力_科目"] = df_input_data["科目"].map(
output_subject_map
)
except Exception as e:
print(f"Error processing SubjectSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Standard subject mapping
if sentence_service.df_standard_subject_map_data is not None:
standard_subject_data_mapper = StandardSubjectDataMapper(
df_map_data=sentence_service.df_standard_subject_map_data
)
df_output_data = standard_subject_data_mapper.map_data(
df_input_data=df_input_data,
input_key_columns=["出力_科目"],
in_place=True,
)
else:
df_output_data = df_input_data.copy()
except Exception as e:
print(f"Error processing StandardSubjectDataMapper: {e}")
# Continue with original data if standard subject mapping fails
df_output_data = df_input_data.copy()
try:
# Sub subject mapping
if sentence_service.df_sub_subject_map_data is not None:
sub_subject_similarity_mapper = SubSubjectSimilarityMapper(
cached_embedding_helper=sentence_service.sub_subject_cached_embedding_helper,
df_map_data=sentence_service.df_sub_subject_map_data,
)
sub_subject_similarity_mapper.predict_input(
df_input_data=df_output_data
)
df_output_data = df_output_data.fillna("")
except Exception as e:
print(f"Error processing SubSubjectSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Name mapping
if sentence_service.df_name_map_data is not None:
name_sentence_mapper = NameSimilarityMapper(
cached_embedding_helper=sentence_service.name_cached_embedding_helper,
df_map_data=sentence_service.df_name_map_data,
)
name_sentence_mapper.predict_input(df_input_data=df_output_data)
except Exception as e:
print(f"Error processing NameSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Sub subject and name mapping
if sentence_service.df_sub_subject_and_name_map_data is not None:
sub_subject_and_name_mapper = SubSubjectAndNameDataMapper(
df_map_data=sentence_service.df_sub_subject_and_name_map_data
)
sub_subject_and_name_mapper.map_data(df_input_data=df_output_data)
except Exception as e:
print(f"Error processing SubSubjectAndNameDataMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Abstract mapping
if sentence_service.df_abstract_map_data is not None:
# Ensure required columns exist before AbstractSimilarityMapper
required_columns_for_abstract = {
"標準科目": "",
"摘要グループ": "",
"確定": "未確定",
"摘要": "",
"備考": "",
}
# Add missing columns with appropriate defaults
for col, default_val in required_columns_for_abstract.items():
if col not in df_output_data.columns:
df_output_data[col] = default_val
print(
f"DEBUG: Added missing column '{col}' with default value '{default_val}'"
)
# Ensure data types are correct (convert to string to avoid type issues)
for col in ["標準科目", "摘要グループ", "確定", "摘要", "備考"]:
if col in df_output_data.columns:
df_output_data[col] = df_output_data[col].astype(str).fillna("")
abstract_similarity_mapper = AbstractSimilarityMapper(
cached_embedding_helper=sentence_service.abstract_cached_embedding_helper,
df_map_data=sentence_service.df_abstract_map_data,
)
abstract_similarity_mapper.predict_input(df_input_data=df_output_data)
print(f"DEBUG: AbstractSimilarityMapper completed successfully")
except Exception as e:
print(f"Error processing AbstractSimilarityMapper: {e}")
print(f"DEBUG: Full error traceback:")
import traceback
traceback.print_exc()
# Don't raise the exception, continue processing
print(f"DEBUG: Continuing without AbstractSimilarityMapper...")
try:
# Name and abstract mapping
if sentence_service.df_name_and_subject_map_data is not None:
name_and_abstract_mapper = NameAndAbstractDataMapper(
df_map_data=sentence_service.df_name_and_subject_map_data
)
df_output_data = name_and_abstract_mapper.map_data(df_output_data)
except Exception as e:
print(f"Error processing NameAndAbstractDataMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Unit mapping
if sentence_service.df_unit_map_data is not None:
unit_mapper = UnitSimilarityMapper(
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
df_map_data=sentence_service.df_unit_map_data,
)
unit_mapper.predict_input(df_input_data=df_output_data)
except Exception as e:
print(f"Error processing UnitMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Standard name mapping
if sentence_service.df_standard_name_map_data is not None:
standard_name_mapper = StandardNameMapper(
df_map_data=sentence_service.df_standard_name_map_data
)
df_output_data = standard_name_mapper.map_data(df_output_data)
except Exception as e:
print(f"Error processing StandardNameMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Create output columns and ensure they have proper values
# Add ID column if not exists
if "ID" not in df_output_data.columns:
df_output_data.reset_index(drop=False, inplace=True)
df_output_data.rename(columns={"index": "ID"}, inplace=True)
df_output_data["ID"] = df_output_data["ID"] + 1 # Start from 1
# Ensure required columns exist with default values
required_columns = {
"シート名": "",
"行": "",
"科目": "",
"中科目": "",
"分類": "",
"名称": "",
"単位": "",
"摘要": "",
"備考": "",
"出力_科目": "",
"出力_中科目": "",
"出力_項目名": "",
"出力_標準単位": "",
"出力_集計用単位": "",
"出力_確率度": 0.0,
}
for col, default_value in required_columns.items():
if col not in df_output_data.columns:
df_output_data[col] = default_value
# Map output columns to match Excel structure
# 出力_中科目 mapping - use the standard sub-subject from sub-subject mapper
if "出力_基準中科目" in df_output_data.columns:
df_output_data["出力_中科目"] = df_output_data["出力_基準中科目"]
elif "標準中科目" in df_output_data.columns:
df_output_data["出力_中科目"] = df_output_data["標準中科目"]
# 出力_項目名 mapping - use the final item name from name and abstract mapper
if (
"出力_項目名" in df_output_data.columns
and not df_output_data["出力_項目名"].isna().all()
):
# Keep existing 出力_項目名 if it exists and has values
pass
elif "出力_標準名称" in df_output_data.columns:
df_output_data["出力_項目名"] = df_output_data["出力_標準名称"]
elif "出力_基準名称" in df_output_data.columns:
df_output_data["出力_項目名"] = df_output_data["出力_基準名称"]
# 出力_標準単位 mapping - use unit mapper result
if "出力_標準単位" in df_output_data.columns:
df_output_data["出力_標準単位"] = df_output_data["出力_標準単位"]
# 出力_集計用単位 mapping - use unit mapper result
if "出力_集計用単位" in df_output_data.columns:
df_output_data["出力_集計用単位"] = df_output_data["出力_集計用単位"]
# 出力_確率度 mapping - use the name similarity as main probability
if "出力_名称類似度" in df_output_data.columns:
df_output_data["出力_確率度"] = df_output_data["出力_名称類似度"]
elif "出力_中科目類似度" in df_output_data.columns:
df_output_data["出力_確率度"] = df_output_data["出力_中科目類似度"]
elif "出力_摘要類似度" in df_output_data.columns:
df_output_data["出力_確率度"] = df_output_data["出力_摘要類似度"]
elif "出力_単位類似度" in df_output_data.columns:
df_output_data["出力_確率度"] = df_output_data["出力_単位類似度"]
else:
df_output_data["出力_確率度"] = 0.0
# Fill NaN values and ensure all output columns have proper values
df_output_data = df_output_data.fillna("")
# Debug: Print available columns to see what we have
print(f"Available columns after processing: {list(df_output_data.columns)}")
# Final check and fallback for missing output columns
if (
"出力_中科目" not in df_output_data.columns
or df_output_data["出力_中科目"].eq("").all()
):
df_output_data["出力_中科目"] = df_output_data.get("中科目", "")
if (
"出力_項目名" not in df_output_data.columns
or df_output_data["出力_項目名"].eq("").all()
):
df_output_data["出力_項目名"] = df_output_data.get("名称", "")
if (
"出力_単位" not in df_output_data.columns
or df_output_data["出力_単位"].eq("").all()
):
df_output_data["出力_単位"] = df_output_data.get("単位", "")
if "出力_確率度" not in df_output_data.columns:
df_output_data["出力_確率度"] = 0 # Default confidence score
# Define output columns in exact order as shown in Excel
output_columns = [
"ID",
"シート名",
"行",
"科目",
"中科目",
"分類",
"名称",
"単位",
"摘要",
"備考",
"出力_科目",
"出力_中科目",
"出力_項目名",
"出力_確率度",
"出力_標準単位",
"出力_集計用単位",
]
# Save with utf_8_sig encoding for Japanese Excel compatibility
df_output_data[output_columns].to_csv(
output_file_path, index=False, encoding="utf_8_sig"
)
# Save all caches
sentence_service.save_all_caches()
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
return FileResponse(
path=output_file_path,
filename=f"output_{Path(file.filename).stem}.csv",
media_type="text/csv",
headers={
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
"Content-Type": "application/x-www-form-urlencoded",
},
)
except Exception as e:
print(f"Error processing file: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/embeddings")
async def create_embeddings(
request: EmbeddingRequest,
current_user=Depends(get_current_user_from_token),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Create embeddings for a list of input sentences (requires authentication)
"""
try:
start_time = time.time()
embeddings = sentence_service.sentenceTransformerHelper.create_embeddings(
request.sentences
)
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
# Convert numpy array to list for JSON serialization
embeddings_list = embeddings.tolist()
return {"embeddings": embeddings_list}
except Exception as e:
print(f"Error creating embeddings: {e}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/predict-raw", response_model=PredictRawResponse)
async def predict_raw(
request: PredictRawRequest,
current_user=Depends(get_current_user_from_token),
sentence_service: SentenceTransformerService = Depends(
lambda: sentence_transformer_service
),
):
"""
Process raw input records and return standardized names (requires authentication)
"""
try:
# Convert input records to DataFrame
records_dict = {
"科目": [],
"中科目": [],
"分類": [],
"名称": [],
"単位": [],
"摘要": [],
"備考": [],
"シート名": [], # Required by BaseNameData but not used
"行": [], # Required by BaseNameData but not used
}
for record in request.records:
records_dict["科目"].append(record.subject)
records_dict["中科目"].append(record.sub_subject)
records_dict["分類"].append(record.name_category)
records_dict["名称"].append(record.name)
records_dict["単位"].append("") # Default empty
records_dict["摘要"].append(record.abstract or "")
records_dict["備考"].append(record.memo or "")
records_dict["シート名"].append("") # Placeholder
records_dict["行"].append("") # Placeholder
df_input_data = pd.DataFrame(records_dict)
# Process data similar to the main predict function
try:
# Subject mapping
if sentence_service.df_subject_map_data is not None:
subject_similarity_mapper = SubjectSimilarityMapper(
cached_embedding_helper=sentence_service.subject_cached_embedding_helper,
df_map_data=sentence_service.df_subject_map_data,
)
list_input_subject = df_input_data["科目"].unique()
df_subject_data = pd.DataFrame({"科目": list_input_subject})
subject_similarity_mapper.predict_input(df_input_data=df_subject_data)
output_subject_map = dict(
zip(df_subject_data["科目"], df_subject_data["出力_科目"])
)
df_input_data["標準科目"] = df_input_data["科目"].map(
output_subject_map
)
df_input_data["出力_科目"] = df_input_data["科目"].map(
output_subject_map
)
else:
df_input_data["標準科目"] = df_input_data["科目"]
df_input_data["出力_科目"] = df_input_data["科目"]
except Exception as e:
print(f"Error processing SubjectSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Name mapping (simplified for raw predict)
if sentence_service.df_name_map_data is not None:
name_sentence_mapper = NameSimilarityMapper(
cached_embedding_helper=sentence_service.name_cached_embedding_helper,
df_map_data=sentence_service.df_name_map_data,
)
name_sentence_mapper.predict_input(df_input_data=df_input_data)
except Exception as e:
print(f"Error processing NameSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
try:
# Unit mapping
if sentence_service.df_unit_map_data is not None:
unit_mapper = UnitSimilarityMapper(
cached_embedding_helper=sentence_service.unit_cached_embedding_helper,
df_map_data=sentence_service.df_unit_map_data,
)
unit_mapper.predict_input(df_input_data=df_input_data)
except Exception as e:
print(f"Error processing UnitSimilarityMapper: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Ensure required columns exist
for col in [
"確定",
"出力_標準名称",
"出力_名称類似度",
"出力_標準単位",
"出力_単位類似度",
]:
if col not in df_input_data.columns:
if col in ["出力_名称類似度", "出力_単位類似度"]:
df_input_data[col] = 0.0
else:
df_input_data[col] = ""
# Convert results to response format
results = []
for _, row in df_input_data.iterrows():
result = PredictResult(
subject=row["科目"],
sub_subject=row["中科目"],
name_category=row["分類"],
name=row["名称"],
abstract=row["摘要"],
memo=row["備考"],
confirmed=row.get("確定", ""),
standard_subject=row.get("出力_科目", row["科目"]),
standard_name=row.get("出力_標準名称", ""),
similarity_score=float(row.get("出力_名称類似度", 0.0)),
)
results.append(result)
# Save all caches
sentence_service.save_all_caches()
return PredictRawResponse(results=results)
except Exception as e:
print(f"Error processing records: {e}")
raise HTTPException(status_code=500, detail=str(e))
|