File size: 13,444 Bytes
b26c508
ab43a9d
 
 
 
 
 
 
 
 
b26c508
b77c0a2
b26c508
 
 
 
 
 
 
 
 
 
b77c0a2
b26c508
 
 
 
b77c0a2
b26c508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
 
 
7fff61c
b26c508
 
7fff61c
b26c508
 
 
 
7fff61c
b26c508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fff61c
b26c508
 
7fff61c
01ae535
b77c0a2
 
 
 
b26c508
 
 
7fff61c
b26c508
7fff61c
b26c508
7fff61c
b26c508
7fff61c
b26c508
7fff61c
b26c508
 
 
 
 
 
 
 
 
 
ec235f7
b77c0a2
 
 
 
 
 
 
 
 
c41415e
28bdc3c
b26c508
28bdc3c
b26c508
 
7fff61c
b26c508
 
7fff61c
b26c508
 
7fff61c
b26c508
 
df40595
b26c508
7fff61c
b26c508
 
7fff61c
b26c508
 
df40595
b26c508
 
632ec54
b77c0a2
 
b26c508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfb55d0
 
 
 
 
 
 
 
 
 
 
 
b26c508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec235f7
 
 
 
 
 
 
 
b26c508
 
 
 
 
 
7fff61c
b26c508
 
 
7fff61c
b26c508
 
 
7fff61c
b26c508
 
 
7fff61c
b26c508
 
 
7fff61c
b26c508
 
 
 
 
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
7fff61c
b26c508
 
 
 
 
 
 
 
 
 
 
 
 
b77c0a2
df40595
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import pickle
import pandas as pd
import warnings

# Suppress pandas warnings globally
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=pd.errors.SettingWithCopyWarning)
pd.set_option("mode.chained_assignment", None)

import sys
from config import (
    MODEL_NAME,
    MODEL_TYPE,
    DEVICE_TYPE,
    SENTENCE_EMBEDDING_FILE,
    STANDARD_NAME_MAP_DATA_FILE,
    SUBJECT_DATA_FILE,
    DATA_DIR,
    HALF,
    ABSTRACT_MAP_DATA_FILE,
    NAME_ABSTRACT_MAP_DATA_FILE,
)

# Add the path to import modules from meisai-check-ai
# sys.path.append(os.path.join(os.path.dirname(__file__), "..", "meisai-check-ai"))

from sentence_transformer_lib.sentence_transformer_helper import SentenceTransformerHelper
from sentence_transformer_lib.cached_embedding_helper import CachedEmbeddingHelper

# Cache file paths for different types of embeddings
CACHED_EMBEDDINGS_SUBJECT_FILE = os.path.join(DATA_DIR, "cached_embeddings_subject.pkl")
CACHED_EMBEDDINGS_NAME_FILE = os.path.join(DATA_DIR, "cached_embeddings_name.pkl")
CACHED_EMBEDDINGS_ABSTRACT_FILE = os.path.join(
    DATA_DIR, "cached_embeddings_abstract.pkl"
)
CACHED_EMBEDDINGS_SUB_SUBJECT_FILE = os.path.join(
    DATA_DIR, "cached_embeddings_sub_subject.pkl"
)
CACHED_EMBEDDINGS_UNIT_FILE = os.path.join(DATA_DIR, "cached_embeddings_unit.pkl")


def load_cached_embeddings_by_type(cache_type):
    """Load cached embeddings from file based on type"""
    cache_files = {
        "subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
        "name": CACHED_EMBEDDINGS_NAME_FILE,
        "abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
        "sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
        "unit": CACHED_EMBEDDINGS_UNIT_FILE,
    }

    cache_file = cache_files.get(cache_type)
    if not cache_file:
        print(f"Unknown cache type: {cache_type}")
        return {}, False

    if os.path.exists(cache_file):
        try:
            with open(cache_file, "rb") as f:
                cached_embeddings = pickle.load(f)
            print(
                f"Loaded {cache_type} embeddings with {len(cached_embeddings)} entries from {cache_file}"
            )
            return cached_embeddings, True
        except Exception as e:
            print(f"Error loading {cache_type} embeddings: {e}")
            return {}, False
    else:
        print(
            f"No {cache_type} embeddings cache file found. Starting with empty cache."
        )
        return {}, False


def save_cached_embeddings_by_type(cached_embedding_helper, cache_type):
    """Save cached embeddings to file based on type"""
    cache_files = {
        "subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
        "name": CACHED_EMBEDDINGS_NAME_FILE,
        "abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
        "sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
        "unit": CACHED_EMBEDDINGS_UNIT_FILE,
    }

    cache_file = cache_files.get(cache_type)
    if not cache_file:
        print(f"Unknown cache type: {cache_type}")
        return

    try:
        # Ensure directory exists
        os.makedirs(os.path.dirname(cache_file), exist_ok=True)
        cached_embeddings = cached_embedding_helper._cached_sentence_embeddings
        with open(cache_file, "wb") as f:
            pickle.dump(cached_embeddings, f)
        print(
            f"Saved {cache_type} embeddings with {len(cached_embeddings)} entries to {cache_file}"
        )
    except Exception as e:
        print(f"Error saving {cache_type} embeddings: {e}")


def create_cached_embedding_helper_for_type(sentence_transformer, cache_type):
    """Create a CachedEmbeddingHelper for specific embedding type"""
    cached_embeddings, is_loaded = load_cached_embeddings_by_type(cache_type)
    return CachedEmbeddingHelper(
        sentence_transformer, cached_sentence_embeddings=cached_embeddings
    ), is_loaded


class SentenceTransformerService:
    def __init__(self):
        self.sentenceTransformerHelper = None

        # Different cached embedding helpers for different types
        self.unit_cached_embedding_helper = None
        self.unit_is_loaded = False
        self.subject_cached_embedding_helper = None
        self.subject_is_loaded = False
        self.sub_subject_cached_embedding_helper = None
        self.sub_subject_is_loaded = False
        self.name_cached_embedding_helper = None
        self.name_is_loaded = False
        self.abstract_cached_embedding_helper = None
        self.abstract_is_loaded = False

        # Map data holders
        self.df_unit_map_data = None
        self.df_subject_map_data = None
        self.df_standard_subject_map_data = None
        self.df_sub_subject_map_data = None
        self.df_name_map_data = None
        self.df_abstract_map_data = None
        self.df_name_and_subject_map_data = None
        self.df_sub_subject_and_name_map_data = None
        self.df_standard_name_map_data = None

    def load_model_data(self):
        """Load model and data only once at startup"""
        if self.sentenceTransformerHelper is not None:
            print("Model already loaded. Skipping reload.")
            return  # Không load lại nếu đã có model

        print("Loading models and data...")
        # Load sentence transformer model
        print(f"Loading model {MODEL_NAME} with type {MODEL_TYPE} and half={HALF}")
        self.sentenceTransformerHelper = SentenceTransformerHelper(
            model_name=MODEL_NAME, model_type=MODEL_TYPE, half=HALF
        )

        # Create different cached embedding helpers for different types
        self.unit_cached_embedding_helper, self.unit_is_loaded = create_cached_embedding_helper_for_type(
            self.sentenceTransformerHelper, "unit"
        )
        self.subject_cached_embedding_helper, self.subject_is_loaded = create_cached_embedding_helper_for_type(
            self.sentenceTransformerHelper, "subject"
        )
        self.sub_subject_cached_embedding_helper, self.sub_subject_is_loaded = (
            create_cached_embedding_helper_for_type(
                self.sentenceTransformerHelper, "sub_subject"
            )
        )
        self.name_cached_embedding_helper, self.name_is_loaded = create_cached_embedding_helper_for_type(
            self.sentenceTransformerHelper, "name"
        )
        self.abstract_cached_embedding_helper, self.abstract_is_loaded = create_cached_embedding_helper_for_type(
            self.sentenceTransformerHelper, "abstract"
        )

        # Load map data from CSV files (assuming they exist)
        self._load_map_data()

        print("Models and data loaded successfully")

    def _load_map_data(self):
        """Load all mapping data from CSV files"""
        try:
            import pandas as pd

            # Load unit map data
            unit_map_file = os.path.join(DATA_DIR, "unitMapData.csv")
            if os.path.exists(unit_map_file):
                self.df_unit_map_data = pd.read_csv(unit_map_file)
                print(f"Loaded unit map data: {len(self.df_unit_map_data)} entries")

            # Load subject map data
            subject_map_file = os.path.join(DATA_DIR, "subjectMapData.csv")
            if os.path.exists(subject_map_file):
                self.df_subject_map_data = pd.read_csv(subject_map_file)
                print(
                    f"Loaded subject map data: {len(self.df_subject_map_data)} entries"
                )

            # Load standard subject map data
            standard_subject_map_file = os.path.join(
                DATA_DIR, "standardSubjectMapData.csv"
            )
            if os.path.exists(standard_subject_map_file):
                self.df_standard_subject_map_data = pd.read_csv(
                    standard_subject_map_file
                )
                print(
                    f"Loaded standard subject map data: {len(self.df_standard_subject_map_data)} entries"
                )

            # Load sub subject map data
            sub_subject_map_file = os.path.join(DATA_DIR, "subSubjectMapData.csv")
            if os.path.exists(sub_subject_map_file):
                self.df_sub_subject_map_data = pd.read_csv(sub_subject_map_file)
                print(
                    f"Loaded sub subject map data: {len(self.df_sub_subject_map_data)} entries"
                )

            # Load name map data
            name_map_file = os.path.join(DATA_DIR, "nameMapData.csv")
            if os.path.exists(name_map_file):
                self.df_name_map_data = pd.read_csv(name_map_file)
                print(f"Loaded name map data: {len(self.df_name_map_data)} entries")

            # Load sub subject and name map data
            sub_subject_and_name_map_file = os.path.join(
                DATA_DIR, "subSubjectAndNameMapData.csv"
            )
            if os.path.exists(sub_subject_and_name_map_file):
                self.df_sub_subject_and_name_map_data = pd.read_csv(
                    sub_subject_and_name_map_file
                )
                print(
                    f"Loaded sub subject and name map data: {len(self.df_sub_subject_and_name_map_data)} entries"
                )

            # Load abstract map data
            abstract_map_file = os.path.join(DATA_DIR, "abstractMapData.csv")
            if os.path.exists(abstract_map_file):
                self.df_abstract_map_data = pd.read_csv(abstract_map_file)
                print(
                    f"Loaded abstract map data: {len(self.df_abstract_map_data)} entries"
                )

            # Load name and subject map data
            name_and_subject_map_file = os.path.join(
                DATA_DIR, "nameAndSubjectMapData.csv"
            )
            if os.path.exists(name_and_subject_map_file):
                self.df_name_and_subject_map_data = pd.read_csv(
                    name_and_subject_map_file
                )
                print(
                    f"Loaded name and subject map data: {len(self.df_name_and_subject_map_data)} entries"
                )

            # Load standard name map data
            standard_name_map_file = os.path.join(DATA_DIR, "standardNameMapData.csv")
            if os.path.exists(standard_name_map_file):
                self.df_standard_name_map_data = pd.read_csv(standard_name_map_file)
                print(
                    f"Loaded standard name map data: {len(self.df_standard_name_map_data)} entries"
                )

        except Exception as e:
            print(f"Error loading map data: {e}")

    def save_all_caches(self):
        """Save all cached embeddings"""
        try:
            if not self.unit_is_loaded:
                save_cached_embeddings_by_type(
                    self.unit_cached_embedding_helper, "unit"
                )
            if not self.subject_is_loaded:
                save_cached_embeddings_by_type(
                    self.subject_cached_embedding_helper, "subject"
                )
            if not self.sub_subject_is_loaded:
                save_cached_embeddings_by_type(
                    self.sub_subject_cached_embedding_helper, "sub_subject"
                )
            if not self.name_is_loaded:
                save_cached_embeddings_by_type(
                    self.name_cached_embedding_helper, "name"
                )
            if not self.abstract_is_loaded:
                save_cached_embeddings_by_type(
                    self.abstract_cached_embedding_helper, "abstract"
                )

            # Print cache statistics summary
            print("\n" + "=" * 60)
            print("EMBEDDING CACHE PERFORMANCE SUMMARY")
            print("=" * 60)

            total_cache_size = 0
            if not self.unit_is_loaded:
                unit_size = len(
                    self.unit_cached_embedding_helper._cached_sentence_embeddings
                )
                total_cache_size += unit_size
                print(f"Unit cache: {unit_size} embeddings")

            if not self.subject_is_loaded:
                subject_size = len(
                    self.subject_cached_embedding_helper._cached_sentence_embeddings
                )
                total_cache_size += subject_size
                print(f"Subject cache: {subject_size} embeddings")

            if not self.sub_subject_is_loaded:
                sub_subject_size = len(
                    self.sub_subject_cached_embedding_helper._cached_sentence_embeddings
                )
                total_cache_size += sub_subject_size
                print(f"Sub-subject cache: {sub_subject_size} embeddings")

            if not self.name_is_loaded:
                name_size = len(
                    self.name_cached_embedding_helper._cached_sentence_embeddings
                )
                total_cache_size += name_size
                print(f"Name cache: {name_size} embeddings")

            if not self.abstract_is_loaded:
                abstract_size = len(
                    self.abstract_cached_embedding_helper._cached_sentence_embeddings
                )
                total_cache_size += abstract_size
                print(f"Abstract cache: {abstract_size} embeddings")

            print(f"Total cached embeddings: {total_cache_size}")
            print("=" * 60)

        except Exception as e:
            print(f"Error saving caches: {e}")


# Global instance (singleton)
sentence_transformer_service = SentenceTransformerService()