Spaces:
Running
Running
File size: 13,444 Bytes
b26c508 ab43a9d b26c508 b77c0a2 b26c508 b77c0a2 b26c508 b77c0a2 b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c 01ae535 b77c0a2 b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 ec235f7 b77c0a2 c41415e 28bdc3c b26c508 28bdc3c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 df40595 b26c508 7fff61c b26c508 7fff61c b26c508 df40595 b26c508 632ec54 b77c0a2 b26c508 dfb55d0 b26c508 ec235f7 b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 7fff61c b26c508 b77c0a2 df40595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import pickle
import pandas as pd
import warnings
# Suppress pandas warnings globally
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=pd.errors.SettingWithCopyWarning)
pd.set_option("mode.chained_assignment", None)
import sys
from config import (
MODEL_NAME,
MODEL_TYPE,
DEVICE_TYPE,
SENTENCE_EMBEDDING_FILE,
STANDARD_NAME_MAP_DATA_FILE,
SUBJECT_DATA_FILE,
DATA_DIR,
HALF,
ABSTRACT_MAP_DATA_FILE,
NAME_ABSTRACT_MAP_DATA_FILE,
)
# Add the path to import modules from meisai-check-ai
# sys.path.append(os.path.join(os.path.dirname(__file__), "..", "meisai-check-ai"))
from sentence_transformer_lib.sentence_transformer_helper import SentenceTransformerHelper
from sentence_transformer_lib.cached_embedding_helper import CachedEmbeddingHelper
# Cache file paths for different types of embeddings
CACHED_EMBEDDINGS_SUBJECT_FILE = os.path.join(DATA_DIR, "cached_embeddings_subject.pkl")
CACHED_EMBEDDINGS_NAME_FILE = os.path.join(DATA_DIR, "cached_embeddings_name.pkl")
CACHED_EMBEDDINGS_ABSTRACT_FILE = os.path.join(
DATA_DIR, "cached_embeddings_abstract.pkl"
)
CACHED_EMBEDDINGS_SUB_SUBJECT_FILE = os.path.join(
DATA_DIR, "cached_embeddings_sub_subject.pkl"
)
CACHED_EMBEDDINGS_UNIT_FILE = os.path.join(DATA_DIR, "cached_embeddings_unit.pkl")
def load_cached_embeddings_by_type(cache_type):
"""Load cached embeddings from file based on type"""
cache_files = {
"subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
"name": CACHED_EMBEDDINGS_NAME_FILE,
"abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
"sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
"unit": CACHED_EMBEDDINGS_UNIT_FILE,
}
cache_file = cache_files.get(cache_type)
if not cache_file:
print(f"Unknown cache type: {cache_type}")
return {}, False
if os.path.exists(cache_file):
try:
with open(cache_file, "rb") as f:
cached_embeddings = pickle.load(f)
print(
f"Loaded {cache_type} embeddings with {len(cached_embeddings)} entries from {cache_file}"
)
return cached_embeddings, True
except Exception as e:
print(f"Error loading {cache_type} embeddings: {e}")
return {}, False
else:
print(
f"No {cache_type} embeddings cache file found. Starting with empty cache."
)
return {}, False
def save_cached_embeddings_by_type(cached_embedding_helper, cache_type):
"""Save cached embeddings to file based on type"""
cache_files = {
"subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
"name": CACHED_EMBEDDINGS_NAME_FILE,
"abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
"sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
"unit": CACHED_EMBEDDINGS_UNIT_FILE,
}
cache_file = cache_files.get(cache_type)
if not cache_file:
print(f"Unknown cache type: {cache_type}")
return
try:
# Ensure directory exists
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
cached_embeddings = cached_embedding_helper._cached_sentence_embeddings
with open(cache_file, "wb") as f:
pickle.dump(cached_embeddings, f)
print(
f"Saved {cache_type} embeddings with {len(cached_embeddings)} entries to {cache_file}"
)
except Exception as e:
print(f"Error saving {cache_type} embeddings: {e}")
def create_cached_embedding_helper_for_type(sentence_transformer, cache_type):
"""Create a CachedEmbeddingHelper for specific embedding type"""
cached_embeddings, is_loaded = load_cached_embeddings_by_type(cache_type)
return CachedEmbeddingHelper(
sentence_transformer, cached_sentence_embeddings=cached_embeddings
), is_loaded
class SentenceTransformerService:
def __init__(self):
self.sentenceTransformerHelper = None
# Different cached embedding helpers for different types
self.unit_cached_embedding_helper = None
self.unit_is_loaded = False
self.subject_cached_embedding_helper = None
self.subject_is_loaded = False
self.sub_subject_cached_embedding_helper = None
self.sub_subject_is_loaded = False
self.name_cached_embedding_helper = None
self.name_is_loaded = False
self.abstract_cached_embedding_helper = None
self.abstract_is_loaded = False
# Map data holders
self.df_unit_map_data = None
self.df_subject_map_data = None
self.df_standard_subject_map_data = None
self.df_sub_subject_map_data = None
self.df_name_map_data = None
self.df_abstract_map_data = None
self.df_name_and_subject_map_data = None
self.df_sub_subject_and_name_map_data = None
self.df_standard_name_map_data = None
def load_model_data(self):
"""Load model and data only once at startup"""
if self.sentenceTransformerHelper is not None:
print("Model already loaded. Skipping reload.")
return # Không load lại nếu đã có model
print("Loading models and data...")
# Load sentence transformer model
print(f"Loading model {MODEL_NAME} with type {MODEL_TYPE} and half={HALF}")
self.sentenceTransformerHelper = SentenceTransformerHelper(
model_name=MODEL_NAME, model_type=MODEL_TYPE, half=HALF
)
# Create different cached embedding helpers for different types
self.unit_cached_embedding_helper, self.unit_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "unit"
)
self.subject_cached_embedding_helper, self.subject_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "subject"
)
self.sub_subject_cached_embedding_helper, self.sub_subject_is_loaded = (
create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "sub_subject"
)
)
self.name_cached_embedding_helper, self.name_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "name"
)
self.abstract_cached_embedding_helper, self.abstract_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "abstract"
)
# Load map data from CSV files (assuming they exist)
self._load_map_data()
print("Models and data loaded successfully")
def _load_map_data(self):
"""Load all mapping data from CSV files"""
try:
import pandas as pd
# Load unit map data
unit_map_file = os.path.join(DATA_DIR, "unitMapData.csv")
if os.path.exists(unit_map_file):
self.df_unit_map_data = pd.read_csv(unit_map_file)
print(f"Loaded unit map data: {len(self.df_unit_map_data)} entries")
# Load subject map data
subject_map_file = os.path.join(DATA_DIR, "subjectMapData.csv")
if os.path.exists(subject_map_file):
self.df_subject_map_data = pd.read_csv(subject_map_file)
print(
f"Loaded subject map data: {len(self.df_subject_map_data)} entries"
)
# Load standard subject map data
standard_subject_map_file = os.path.join(
DATA_DIR, "standardSubjectMapData.csv"
)
if os.path.exists(standard_subject_map_file):
self.df_standard_subject_map_data = pd.read_csv(
standard_subject_map_file
)
print(
f"Loaded standard subject map data: {len(self.df_standard_subject_map_data)} entries"
)
# Load sub subject map data
sub_subject_map_file = os.path.join(DATA_DIR, "subSubjectMapData.csv")
if os.path.exists(sub_subject_map_file):
self.df_sub_subject_map_data = pd.read_csv(sub_subject_map_file)
print(
f"Loaded sub subject map data: {len(self.df_sub_subject_map_data)} entries"
)
# Load name map data
name_map_file = os.path.join(DATA_DIR, "nameMapData.csv")
if os.path.exists(name_map_file):
self.df_name_map_data = pd.read_csv(name_map_file)
print(f"Loaded name map data: {len(self.df_name_map_data)} entries")
# Load sub subject and name map data
sub_subject_and_name_map_file = os.path.join(
DATA_DIR, "subSubjectAndNameMapData.csv"
)
if os.path.exists(sub_subject_and_name_map_file):
self.df_sub_subject_and_name_map_data = pd.read_csv(
sub_subject_and_name_map_file
)
print(
f"Loaded sub subject and name map data: {len(self.df_sub_subject_and_name_map_data)} entries"
)
# Load abstract map data
abstract_map_file = os.path.join(DATA_DIR, "abstractMapData.csv")
if os.path.exists(abstract_map_file):
self.df_abstract_map_data = pd.read_csv(abstract_map_file)
print(
f"Loaded abstract map data: {len(self.df_abstract_map_data)} entries"
)
# Load name and subject map data
name_and_subject_map_file = os.path.join(
DATA_DIR, "nameAndSubjectMapData.csv"
)
if os.path.exists(name_and_subject_map_file):
self.df_name_and_subject_map_data = pd.read_csv(
name_and_subject_map_file
)
print(
f"Loaded name and subject map data: {len(self.df_name_and_subject_map_data)} entries"
)
# Load standard name map data
standard_name_map_file = os.path.join(DATA_DIR, "standardNameMapData.csv")
if os.path.exists(standard_name_map_file):
self.df_standard_name_map_data = pd.read_csv(standard_name_map_file)
print(
f"Loaded standard name map data: {len(self.df_standard_name_map_data)} entries"
)
except Exception as e:
print(f"Error loading map data: {e}")
def save_all_caches(self):
"""Save all cached embeddings"""
try:
if not self.unit_is_loaded:
save_cached_embeddings_by_type(
self.unit_cached_embedding_helper, "unit"
)
if not self.subject_is_loaded:
save_cached_embeddings_by_type(
self.subject_cached_embedding_helper, "subject"
)
if not self.sub_subject_is_loaded:
save_cached_embeddings_by_type(
self.sub_subject_cached_embedding_helper, "sub_subject"
)
if not self.name_is_loaded:
save_cached_embeddings_by_type(
self.name_cached_embedding_helper, "name"
)
if not self.abstract_is_loaded:
save_cached_embeddings_by_type(
self.abstract_cached_embedding_helper, "abstract"
)
# Print cache statistics summary
print("\n" + "=" * 60)
print("EMBEDDING CACHE PERFORMANCE SUMMARY")
print("=" * 60)
total_cache_size = 0
if not self.unit_is_loaded:
unit_size = len(
self.unit_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += unit_size
print(f"Unit cache: {unit_size} embeddings")
if not self.subject_is_loaded:
subject_size = len(
self.subject_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += subject_size
print(f"Subject cache: {subject_size} embeddings")
if not self.sub_subject_is_loaded:
sub_subject_size = len(
self.sub_subject_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += sub_subject_size
print(f"Sub-subject cache: {sub_subject_size} embeddings")
if not self.name_is_loaded:
name_size = len(
self.name_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += name_size
print(f"Name cache: {name_size} embeddings")
if not self.abstract_is_loaded:
abstract_size = len(
self.abstract_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += abstract_size
print(f"Abstract cache: {abstract_size} embeddings")
print(f"Total cached embeddings: {total_cache_size}")
print("=" * 60)
except Exception as e:
print(f"Error saving caches: {e}")
# Global instance (singleton)
sentence_transformer_service = SentenceTransformerService()
|