File size: 4,955 Bytes
532a2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import subprocess
import numpy as np
import requests
import json
from typing import Dict, List
import random
import torch
from joblib import Parallel, delayed
import os


def random_runner(target_prob, size):
    indice = random.choices(range(0, size[1]), k=size[0])
    value = target_prob[range(len(indice)), indice].sum().detach().numpy().item()
    return indice, value


def query(data, model_id, api_token) -> Dict:
    """
    Helper function to query text from audio file by huggingface api inference.
    """
    headers = {"Authorization": f"Bearer {api_token}"}
    api_url = f"https://api-inference.huggingface.co/models/{model_id}"
    response = requests.request("POST", api_url, headers=headers, data=data)
    return json.loads(response.content.decode("utf-8"))


def query_process(filename, model_id, api_token) -> Dict:
    """
    Helper function to query text from audio file by huggingface api inference.
    """
    headers = {"Authorization": f"Bearer {api_token}"}
    api_url = f"https://api-inference.huggingface.co/models/{model_id}"
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.request("POST", api_url, headers=headers, data=data)
    return json.loads(response.content.decode("utf-8"))

def query_dummy(raw_data, processor, model):
    inputs = processor(raw_data, sampling_rate=16000, return_tensors="pt")
    with torch.no_grad():
        logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(predicted_ids)
    return transcription[0]
    
def query_raw(raw_data, word, processor, processor_with_lm, model, temperature=15) -> List:
    """
    Helper function to query draw file to huggingface api inference.
    """
    input_values = processor(raw_data, sampling_rate=16000, return_tensors="pt").input_values
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    top1_prediction = processor_with_lm.decode(logits[0].cpu().numpy())['text']
    if word != top1_prediction.replace(" ", ""):
        pad_token_id = processor.tokenizer.pad_token_id
        word_delimiter_token_id = processor.tokenizer.word_delimiter_token_id
        value_top5, ind_top5 = torch.topk(logits, 3)
        target_index = ind_top5[(predicted_ids != word_delimiter_token_id) & (predicted_ids != pad_token_id)]
        target_prob = value_top5[(predicted_ids != word_delimiter_token_id) & (predicted_ids != pad_token_id)]
        size = target_index.size()
        trial = size[1]**4//2
        prediction_list = Parallel(n_jobs=1, backend="multiprocessing")(
            delayed(random_runner)(target_prob, size) for _ in range(trial)
        )
        target_dict = {i[1]: i[0] for i in prediction_list}
        target_dict = sorted(target_dict.items(), reverse=True)
        results = {}
        for top_pred in target_dict[:temperature]:
            indices = top_pred[1]
            output_sentence = processor.decode(target_index[range(size[0]), indices]).lower()
            results[output_sentence] = top_pred[0]
        results = sorted(results.items(), key=lambda x: x[1], reverse=True)
        return results
    else:
        return [(word, 100)]


def find_different(target, prediction):
    # target_word = set(target)
    # prediction_word = set(prediction)
    # difference = target_word.symmetric_difference(prediction_word)
    # wrong_words = [word for word in target_word if word in list(difference)]
    if len(target) != len(prediction):
        target = target[:len(prediction)]
    wrong_words = [str(1) if target[index] != prediction[index] else str(0) for index in range(len(target))]
    return "".join(wrong_words)


def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
    """
    Helper function to read an audio file through ffmpeg.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    format_for_conversion = "f32le"
    ffmpeg_command = [
        "ffmpeg",
        "-i",
        "pipe:0",
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]

    try:
        ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
    except FileNotFoundError:
        raise ValueError("ffmpeg was not found but is required to load audio files from filename")
    output_stream = ffmpeg_process.communicate(bpayload)
    out_bytes = output_stream[0]
    audio = np.frombuffer(out_bytes, np.float32)
    # if audio.shape[0] == 0:
    #     raise ValueError("Malformed soundfile")
    return audio


def get_model_size(model):
    torch.save(model.state_dict(), 'temp_saved_model.pt')
    model_size_in_mb = os.path.getsize('temp_saved_model.pt') >> 20
    os.remove('temp_saved_model.pt')
    return model_size_in_mb