from fastapi import FastAPI import datetime import torch import os from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM, AutoConfig from huggingface_hub import hf_hub_download from fuzzywuzzy import fuzz from utils import ffmpeg_read, query_dummy, query_raw, find_different ## config API_TOKEN = os.environ["API_TOKEN"] MODEL_PATH = os.environ["MODEL_PATH"] PITCH_PATH = os.environ["PITCH_PATH"] QUANTIZED_MODEL_PATH = hf_hub_download(repo_id=MODEL_PATH, filename='quantized_model.pt', token=API_TOKEN) QUANTIZED_PITCH_MODEL_PATH = hf_hub_download(repo_id=PITCH_PATH, filename='quantized_model.pt', token=API_TOKEN) ## word preprocessor processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_PATH, use_auth_token=API_TOKEN) processor = Wav2Vec2Processor.from_pretrained(MODEL_PATH, use_auth_token=API_TOKEN) ### quantized model config = AutoConfig.from_pretrained(MODEL_PATH, use_auth_token=API_TOKEN) dummy_model = Wav2Vec2ForCTC(config) quantized_model = torch.quantization.quantize_dynamic(dummy_model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True) quantized_model.load_state_dict(torch.load(QUANTIZED_MODEL_PATH)) ## pitch preprocessor processor_pitch = Wav2Vec2Processor.from_pretrained(PITCH_PATH, use_auth_token=API_TOKEN) ### quantized pitch mode config = AutoConfig.from_pretrained(PITCH_PATH, use_auth_token=API_TOKEN) dummy_pitch_model = Wav2Vec2ForCTC(config) quantized_pitch_model = torch.quantization.quantize_dynamic(dummy_pitch_model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True) quantized_pitch_model.load_state_dict(torch.load(QUANTIZED_PITCH_MODEL_PATH)) app = FastAPI() @app.get("/") def read_root(): return {"Message": "Application startup complete"}