Spaces:
Runtime error
Runtime error
File size: 7,813 Bytes
11e3570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from ultralytics import YOLO
import supervision as sv
import cv2
import gradio as gr
import os
import numpy as np
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
import requests
from PIL import Image
import glob
import pandas as pd
import time
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True).to(device).eval()
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
onnx_model = YOLO("models/best.onnx", task='detect')
def ends_with_number(s):
return s[-1].isdigit()
def ocr(image, prompt="<OCR>"):
original_height, original_width = image.shape[:2]
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=prompt,
# image_size=(image.width, image.height)
image_size=(original_width, original_height)
)
return parsed_answer
def parse_detection(detections):
parsed_rows = []
for i in range(len(detections.xyxy)):
x_min = float(detections.xyxy[i][0])
y_min = float(detections.xyxy[i][1])
x_max = float(detections.xyxy[i][2])
y_max = float(detections.xyxy[i][3])
width = int(x_max - x_min)
height = int(y_max - y_min)
row = {
"top": int(y_min),
"left": int(x_min),
"width": width,
"height": height,
"class_id": ""
if detections.class_id is None
else int(detections.class_id[i]),
"confidence": ""
if detections.confidence is None
else float(detections.confidence[i]),
"tracker_id": ""
if detections.tracker_id is None
else int(detections.tracker_id[i]),
}
if hasattr(detections, "data"):
for key, value in detections.data.items():
row[key] = (
str(value[i])
if hasattr(value, "__getitem__") and value.ndim != 0
else str(value)
)
parsed_rows.append(row)
return parsed_rows
def cut_and_save_image(image, parsed_detections, output_dir):
output_path_list = []
for i, det in enumerate(parsed_detections):
# Check if the class is 'mark'
if det['class_name'] == 'mark':
top = det['top']
left = det['left']
width = det['width']
height = det['height']
# Cut the image
cut_image = image[top:top + height, left:left + width]
# Save the image
output_path = f"{output_dir}/cut_image_{i}.png"
scaled_image = sv.scale_image(image=cut_image, scale_factor=4)
cv2.imwrite(output_path, scaled_image, [int(cv2.IMWRITE_JPEG_QUALITY), 500])
output_path_list.append(output_path)
return output_path_list
def analysis(progress=gr.Progress()):
progress(0, desc="Analyzing...")
list_files = glob.glob("output/*.png")
prompt = "<OCR>"
results = {}
for filepath in progress.tqdm(list_files):
basename = os.path.basename(filepath)
image = cv2.imread(filepath)
start_time = time.time()
parsed_answer = ocr(image, prompt)
if not ends_with_number(parsed_answer[prompt]):
parsed_answer[prompt] += "1"
results[parsed_answer[prompt]] = results.get(parsed_answer[prompt], 0) + 1
print(basename, parsed_answer[prompt])
print("Time taken:", time.time() - start_time)
return pd.DataFrame(results.items(), columns=['Mark', 'Total']).reset_index(drop=False).rename(columns={'index': 'No.'})
def inference(
image_path,
conf_threshold,
iou_threshold,
):
"""
YOLOv8 inference function
Args:
image_path: Path to the image
conf_threshold: Confidence threshold
iou_threshold: IoU threshold
Returns:
Rendered image
"""
image = cv2.imread(image_path)
original_height, original_width = image.shape[:2]
print(image.shape)
results = onnx_model(image, conf=conf_threshold, iou=iou_threshold)[0]
detections = sv.Detections.from_ultralytics(results)
parsed_detections = parse_detection(detections)
output_dir = "output"
# Check if the output directory exists, clear all the files inside
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
for f in os.listdir(output_dir):
os.remove(os.path.join(output_dir, f))
output_path_list = cut_and_save_image(image, parsed_detections, output_dir)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator(text_position=sv.Position.TOP_LEFT, text_thickness=1, text_padding=2)
annotated_image = image.copy()
annotated_image = box_annotator.annotate(
scene=annotated_image,
detections=detections
)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
return annotated_image, output_path_list
TITLE = "<h1 style='font-size: 2.5em; text-align: center;'>Identify objects in construction design</h1>"
DESCRIPTION = """<p style='font-size: 1.5em; line-height: 1.6em; text-align: left;'>Welcome to the object
identification application. This tool allows you to upload an image, and it will identify and annotate objects within
the image. Additionally, you can perform OCR analysis on the detected objects.</p> """
CSS = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
h1 {
text-align: center;
}
"""
EXAMPLES = [
['examples/train1.png', 0.6, 0.25],
['examples/train2.png', 0.9, 0.25],
['examples/train3.png', 0.6, 0.25]
]
with gr.Blocks(theme=gr.themes.Soft(), css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
with gr.Tab(label="Identify objects"):
with gr.Row():
input_img = gr.Image(type="filepath", label="Upload Image")
output_img = gr.Image(type="filepath", label="Output Image")
with gr.Row():
with gr.Column():
conf_thres = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Confidence Threshold")
with gr.Column():
iou = gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="IOU Threshold")
with gr.Row():
with gr.Column():
submit_btn = gr.Button(value="Predict")
with gr.Column():
analysis_btn = gr.Button(value="Analysis")
with gr.Row():
output_df = gr.Dataframe(label="Results")
with gr.Row():
with gr.Accordion("Gallery", open=False):
gallery = gr.Gallery(label="Detected Mark Object", columns=3)
submit_btn.click(inference, [input_img, conf_thres, iou], [output_img, gallery])
analysis_btn.click(analysis, [], [output_df])
examples = gr.Examples(
EXAMPLES,
fn=inference,
inputs=[input_img, conf_thres, iou],
outputs=[output_img, gallery],
cache_examples=False,
)
demo.launch(debug=True) |