|
import gradio as gr |
|
import supervision as sv |
|
from rfdetr import RFDETRBase, RFDETRLarge |
|
from rfdetr.util.coco_classes import COCO_CLASSES |
|
|
|
from utils.video import create_directory |
|
|
|
MARKDOWN = """ |
|
# RF-DETR 🔥 |
|
|
|
<div style="display: flex; align-items: center; gap: 8px;"> |
|
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab" /> |
|
</a> |
|
<a href="https://blog.roboflow.com/rf-detr"> |
|
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow" /> |
|
</a> |
|
<a href="https://github.com/roboflow/rf-detr"> |
|
<img src="https://badges.aleen42.com/src/github.svg" alt="roboflow" /> |
|
</a> |
|
</div> |
|
|
|
RF-DETR is a real-time, transformer-based object detection model architecture developed |
|
by [Roboflow](https://roboflow.com/) and released under the Apache 2.0 license. |
|
""" |
|
|
|
IMAGE_EXAMPLES = [ |
|
['https://media.roboflow.com/supervision/image-examples/people-walking.png', 0.3, 728, "large"], |
|
['https://media.roboflow.com/supervision/image-examples/vehicles.png', 0.3, 728, "large"], |
|
['https://media.roboflow.com/notebooks/examples/dog-2.jpeg', 0.5, 560, "base"], |
|
] |
|
|
|
COLOR = sv.ColorPalette.from_hex([ |
|
"#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff", |
|
"#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00" |
|
]) |
|
|
|
VIDEO_SCALE_FACTOR = 0.5 |
|
VIDEO_TARGET_DIRECTORY = "tmp" |
|
create_directory(directory_path=VIDEO_TARGET_DIRECTORY) |
|
|
|
|
|
def inference(image, confidence: float, resolution: int, checkpoint: str): |
|
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge |
|
model = model_class(resolution=resolution) |
|
detections = model.predict(image, threshold=confidence) |
|
|
|
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size) |
|
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size) |
|
|
|
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness) |
|
label_annotator = sv.LabelAnnotator( |
|
color=COLOR, |
|
text_color=sv.Color.BLACK, |
|
text_scale=text_scale, |
|
smart_position=True |
|
) |
|
|
|
labels = [ |
|
f"{COCO_CLASSES[class_id]} {confidence:.2f}" |
|
for class_id, confidence |
|
in zip(detections.class_id, detections.confidence) |
|
] |
|
|
|
annotated_image = image.copy() |
|
annotated_image = bbox_annotator.annotate(annotated_image, detections) |
|
annotated_image = label_annotator.annotate(annotated_image, detections, labels) |
|
return annotated_image |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
image_mode='RGB', |
|
type='pil', |
|
height=600 |
|
) |
|
confidence_slider = gr.Slider( |
|
label="Confidence", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.5, |
|
) |
|
resolution_slider = gr.Slider( |
|
label="Inference resolution", |
|
minimum=560, |
|
maximum=1120, |
|
step=56, |
|
value=728, |
|
) |
|
with gr.Row(): |
|
checkpoint_dropdown = gr.Dropdown( |
|
label="Checkpoint", |
|
choices=["base", "large"], |
|
value="base" |
|
) |
|
submit_button = gr.Button("Submit") |
|
with gr.Column(): |
|
output_image = gr.Image( |
|
label="Input Image", |
|
image_mode='RGB', |
|
type='pil', |
|
height=600 |
|
) |
|
gr.Examples( |
|
fn=inference, |
|
examples=IMAGE_EXAMPLES, |
|
inputs=[input_image, confidence_slider, resolution_slider, checkpoint_dropdown], |
|
outputs=output_image |
|
) |
|
|
|
submit_button.click( |
|
inference, |
|
inputs=[input_image, confidence_slider, resolution_slider, checkpoint_dropdown], |
|
outputs=output_image |
|
) |
|
|
|
demo.launch(debug=False, show_error=True) |
|
|